Complete Interpretation

$$
\mathrm{X} \rightarrow \mathrm{Z} \rightarrow \mathrm{Y}
$$

Partial Interpretation

Partial Explanation

Complete Explanation

Summary Notes on Statistical Elaboration			
Name of Effect	Symbolic Crosst	ab Regression	
	Representation	Results	Results
Replication	Irrespective of Z $X \leftarrow \rightarrow Y$	Same results in control tables as in original table without controls	X predicts Y with and without Z being in equation
Interpretation (mediation)	$X \rightarrow Z \rightarrow Y$	All control tables show weaker relationship than original table	Entering Z into equation reduces or eliminates X's influence on Y
Explanation	$x \leftarrow / \rightarrow Y$	All control tables show weaker relationship than original table	Entering Z into equation reduces or eliminates X's influence on Y
Specification (moderation)	$\begin{aligned} & \text { If } Z=1 \\ & x \leftrightarrow \rightarrow Y \\ & \text { If } Z \neq 1 \\ & x \leftarrow / \rightarrow Y \\ & \text { Or, preferably } \\ & x \text { X } \\ & Z \rightarrow X Z \rightarrow Y \end{aligned}$	Only one (or some) of control tables show relationship from original table	An interaction term of the form $X * Z$ predicts Y
Suppression	Without control for Z: $x \leftarrow / \rightarrow Y$ With control for Z $x \leftarrow \rightarrow Y$	Control tables reveal a relationship that was not evident in original table without controls	Entering Z into equation allows X to predict Y
Distortion	Another pattern of results	Control tables show complex pattern of results	Entering Z into equation produces complex pattern

Interpretation

Explanation

$$
\mathrm{X} 1 \rightarrow \mathrm{X} 2 \rightarrow \mathrm{Y}
$$

$$
\text { compute interact }=(x 1 * x 2)
$$

	Male (0)	Female (1)
Non- Hispanic (0)	0	0
Hispanic (1)	0	1

compute FemHisp = Female*Hisp.

Consider:

	(0)	$(.5)$	(1)
(0)	0	0	0
$(.5)$	0	.25	.5
(1)	0	.5	1

And:

	(1)	(2)	(3)
(1)	1	2	3
(2)	2	4	6
(3)	3	6	9

Both produce valid interaction terms.

However, be particularly careful not to use one dummy and an ordinal variable

	(0)	(1)
(0)	0	0
$(.5)$	0	.5
(1)	0	1

create interaction terms.
compute femhisp $=($ female $*$ hisp $)$.
regression variables=RawMJ3 female hisp femhisp
/statistics anova coeff r tol
/descriptives = n
/dependent = RawMJ3
/method = enter female hisp
/method = enter femhisp.

Raw MJ3 Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.216^{\mathrm{a}}$.047	.045	1.12824
2	$.218^{\mathrm{b}}$.048	.046	1.12828

a. Predictors: (Constant), Hisp, female
b. Predictors: (Constant), Hisp, female, femhisp

Model		b	Std. Error	Beta	t	Sig.	Tol
1	(Constant)	1.770	. 053		33.548	. 000	
	female	-. 312	. 072	-. 135	-4.345	. 000	. 991
	Hisp	-. 438	. 088	-. 156	-4.996	. 000	. 991
2	(Constant)	1.753	. 056		31.539	. 000	
	female	-. 276	. 081	-. 120	-3.419	. 001	. 784
	Hisp	-. 341	. 133	-. 121	-2.575	. 010	. 433
	femhisp	-. 171	. 177	-. 049	-. 970	. 332	. 373

RawMJ3 $=$ Constant + female + hisp + femhisp

```
constant + female + hisp + femhisp
```

| RawMJ3 (Female \& Hisp) | $=1.753-.276(1)-.341(1)-.171(1)=.965$ |
| :--- | :--- | :--- |
| RawMJ3 (Female \& nonHisp) | $=1.753-.276(1)-.341(0)-.171(0)=1.477$ |
| RawMJ3 (Male \& Hisp) $=$ | $1.753-.276(0)-.341(1)-.171(0)=1.412$ |
| RawMJ3 (Male \& nonHisp) $=$ | $1.753-.276(0)-.341(0)-.171(0)=1.753$ |

Predicted Support for Recreational Marijuana by Ethnicity and Gender

Source: PPIC October 2016

Predicted Support for Recreational Marijuana by Gender and Ethnicity

Source: PPIC October 2016

Raw MJ3 Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.386^{\mathrm{a}}$.149	.147	1.06531
2	$.397^{\mathrm{b}}$.158	.155	1.06050

a. Predictors: (Constant), interest, liberal5
b. Predictors: (Constant), interest, liberal5, libint

Model		b	Std. Error	Beta	t	Sig.	Tol
1	(Constant)	. 440	. 107		4.130	. 000	
	liberal5	1.371	. 111	. 366	12.392	. 000	. 998
	interest	. 572	. 121	. 139	4.711	. 000	. 998
2	(Constant)	. 890	. 178		4.998	. 000	
	liberal5	. 510	. 295	. 136	1.731	. 084	. 139
	interest	-. 045	. 230	-. 011	-. 194	. 846	. 275
	libint	1.191	. 379	. 285	3.145	. 002	. 105

| | constant + liberal + interest + libint |
| :--- | :--- | :--- |
| RawMJ3 (vcons \& none) | $=.890+.510(0)-.045(0)+1.191(0)=.890$ |
| RawMJ3 (vcons \& great) | $=.890+.510(0)-.045(1)+1.191(0)=.845$ |
| RawMJ3 (vlib \& none) | $=.890+.510(1)-.045(0)+1.191(0)=1.4$ |
| RawMJ3 (vlib \& great) | $=.890+.510(1)-.045(1)+1.191(1)=2.546$ |

Support for Recreational Marijuana by Ideology and Interest

Source: PPIC October 2016

Support for Recreational Marijuana by Interest and Ideology

Source: PPIC October 2016

Predicting Attitudes toward RawMJ3 using interaction (Unstandardized coefficients)

		Model 1	Model 2	Model 3	Model 4
	(Constant)	1.106	. 797	. 404	. 793
	Democrat5	. $747 * * *$. 194	. 213	. 146
	liberal5		1.210***	1.216***	. 546
	interest			.569***	. 059
	lib*int				.981**
$\overline{\text { Adj } \mathrm{R}^{2}}$. 045	. 124	. 143	. 149
$\mathrm{N}=$		(949)	(949)	(949)	(949)

Complete Specification

Partial Specification

