Images Lecture 8B Poli 101 UCSC

Lazarsfeld's Three Criteria in Assessing Causation (supplemented by K&W #4)

2.	Association Direction of influence Elimination of rival expl's	Surveys measures of association must be inferred statistical control	Experiments measures of assoc/sig product of control <u>random assignment</u>
4.	Id plausible causal mech	statistical control	stat/exper control

Ordinary Multiple Regression

Regression variables = DepVar IndVar1 IndVar2 IndVar3 ... /statistics coeff r tol /descriptive = n /dependent = DepVar /method = enter.

Hierarchical Multiple Regression

Regression variables = DepVar IndVar1 IndVar2 IndVar3 ... /statistics coeff r tol /descriptive = n /dependent = DepVar /method = enter IndVar1 /method = enter IndVar1 IndVar2 /method = enter IndVar1 IndVar2 IndVar3.

Elaboration Paradigm (things that can happen in control tables)

Common Terms

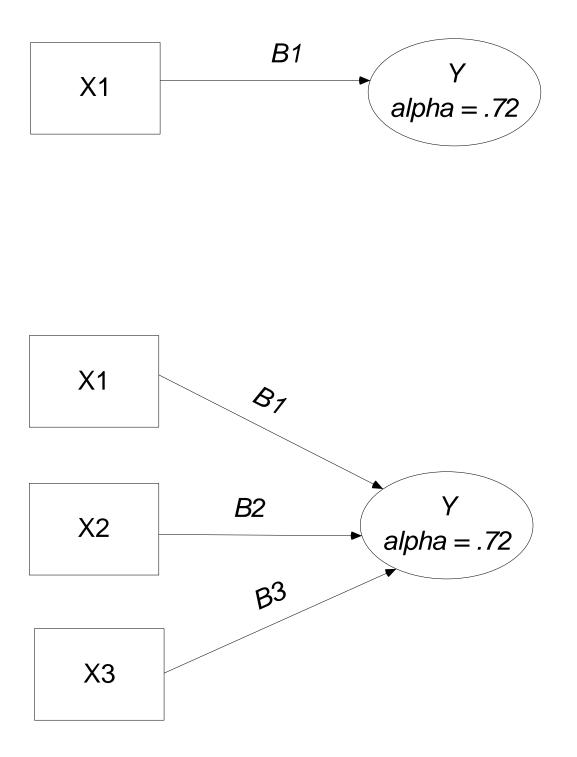
1.replication

- 2a explanation
- 2b interpretation
- 3. specification
- 4. suppression
- 5. distortion

Elaboration Paradigm (things that can happen in control tables)

Elaboration Terms	Psych Terms	Common Terms
1. replication		
2a explanation	spurious	confounding
2b interpretation	mediation	intervening
3 specification	moderation	interaction
4 suppression		
5 distortion		

Elaboration Paradigm (things that can happen in regression)


Elaboration Terms	What we see
1. replication	same results as original IV-DV relationship
2a explanation	control reduces or eliminates original IV-DV relationship
2b interpretation	control reduces or eliminates original IV-DV relationship
3 specification	an interaction term predicts the DV
4 suppression	control increases or reveals an IV-DV relationship
5 distortion	entering control results in complex pattern

Summary Notes on Statistical Elaboration

J. Fletcher

Name of Effect	Crosstab Symbo	olic Regres	sion
	Results R	epresentation	Results
Replication	Same results in		X predicts Y with
	control tables as	Irrespective of Z	and without Z
	in original table	x←→r	being in
	without controls		equation
Explanation	All control tables	Z	Entering Z into
	show weaker	× •	equation reduces
	relationship than	X←/→Y	or eliminates X's
	original table		influence on Y
Interpretation	All control tables		Entering Z into
(mediation)	show weaker		equation reduces
	relationship than	X→Z→Y	or eliminates X's
	original table		influence on Y
Specification	Only one (or	If Z = 1	An interaction
(moderation)	some) of control	x←→y	term of the form
	tables show	lf Z ≠ 1	X*Z predicts Y
	relationship from	X←/→Y	
	original table	Or, preferably	
		X	
		Z → XZ →Y	
Suppression	Control tables	Without control	Entering Z into
	reveal a	for Z:	equation allows
	relationship that	X←/→Y	X to predict Y
	was not evident	With control for	
	in original table	Z	
	without controls	x←→y	
Distortion	Control tables		Entering Z into
	show complex		equation
	pattern of results		produces a
			complex pattern

```
regression variables = DepVar IndVar1 IndVar2 IndVar3
/statistics coeff r tol
/descriptive = n
/dependent = DepVar
/method = Enter IndVar1
/method = Enter IndVar1 IndVar2
/ method = Enter IndVar1 IndVar2 IndVar3.
```


regression variables=RawMJ3 democrat5 female

/statistics anova coeff r tol

/descriptives = n

/dependent = RawMJ3

/method = enter democrat5

/method = enter democrat5 female.

			Unstandardized Coefficients			
Mode	l	В	Std. Error	Beta	Sig.	Tol
1	(Constant)	1.108	.072		.000	
	Democrat5	.734	.111	.209	.000	1.000
2	(Constant)	1.277	.076		.000	
	Democrat5	.808	.110	.230	.000	.987
	female	429	.072	186	.000	.987

2 x .111 = .222

.734 + .222 = .956

The b value didn't change by this much. Therefore, we have replication.

regression variables=RawMJ3 democrat5 interest

/statistics anova coeff r tol

/descriptives = n

/dependent = RawMJ3

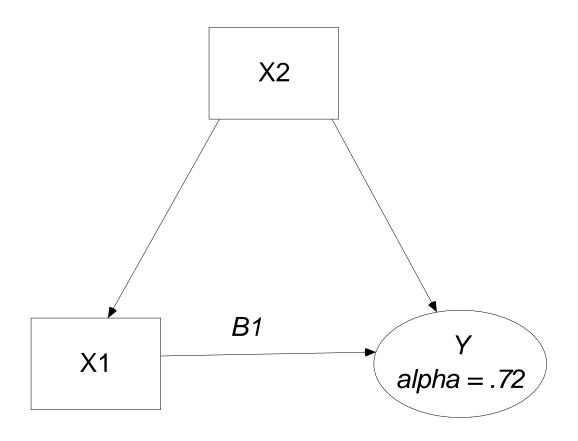
/method = enter democrat5

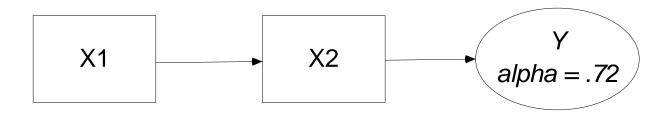
/method = enter democrat5 interest.

		В	Std. Error	Beta	sig	Tol
1	(Constant)	1.108	.072		.000	
	Democrat5	.738	.111	.210	.000	1.000
2	(Constant)	.735	.113		.000	
	Democrat5	.758	.110	.215	.000	.998
	interest	.545	.128	.133	.000	.998

regression variables=RawMJ3 democrat5 black hisp asian

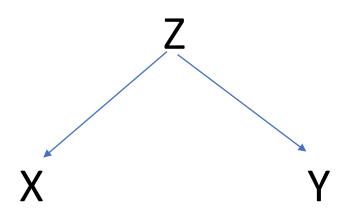
/statistics anova coeff r tol

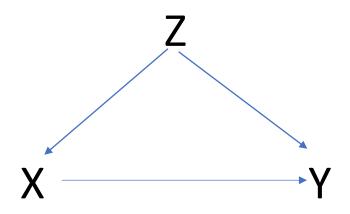

/descriptives = n


/dependent = RawMJ3

/method = enter democrat5

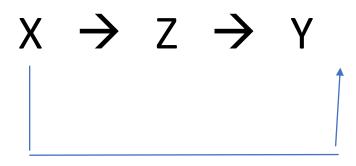
/method = enter democrat5 black hisp asian.


		В	Std. Error	Beta	sig	Tol
1	(Constant)	1.108	.072		.000	
	Democrat5	.734	.111	.209	.000	1.000
2	(Constant)	1.184	.073		.000	
	Democrat5	.904	.113	.257	.000	.923
	Black	055	.148	012	.709	.927
	Hisp	651	.091	233	.000	.880
	Asian	196	.108	057	.071	.938



The important point for you to take away here is that the empirical results supporting explanation and interpretation are identical. In both instances the original relationship is substantially reduced or sometimes completely goes away in the control tables.

Complete Explanation


Partial Explanation

Complete Interpretation (mediation)

Partial Interpretation (mediation)

regression variables=RawMJ3 democrat5 liberal5

/statistics anova coeff r tol

/descriptives = n

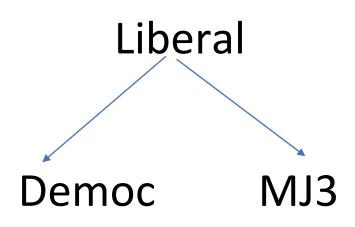
/dependent = RawMJ3

/method = enter democrat5

/method = enter democrat5 liberal5.

		Unstandardized Coefficients		Standard Coefficients		
Mode	l	В	Std. Error	Beta	Sig.	Tol
1	(Constant)	1.108	.072		.000	
	Democrat5	.743	.111	.212	.000	1.000
2	(Constant)	.797	.077		.000	
	Democrat5	.189	.122	.054	.122	.762
	liberal5	1.214	.131	.323	.000	.762

Predicting Attitudes toward Recreational Marijuana with Party Preference (Democrat5) & Ideology (Liberal5) (<u>Unstandardized</u> coefficients)


	Model 1		Model 2
stant)	1.108		.797
crat5	.743***		.189
15			1.214***
	.044		.122
	(950)		(950)
	stant) ocrat5 I5	stant) 1.108 ocrat5 .743*** I5 .044	stant) 1.108 ocrat5 .743*** I5 .044

Predicting Attitudes toward Recreational Marijuana with Party Preference (Democrat5) & Ideology (Liberal5) (<u>Standardized</u> coefficients)

		Model 1	Model 2
	democrat5	.212***	.054
	liberal5		.323***
Adj R ²		.044	.122
N =		(950)	(950)

Democrat \rightarrow Liberal \rightarrow MJ3

Complete Explanation

Perhaps the most theoretically important results using statistical control come from with cases of interpretation. This is because they can help understand the mechanism by which $X \rightarrow Y$. As a result, statistical control using interpretation can be very important for understanding the political meaning of relationships.

Photo \rightarrow Emotion \rightarrow Mission

Photo \rightarrow Sad/Proud \rightarrow Mission

Elaboration Paradigm

Elaboration Terms Psych Terms

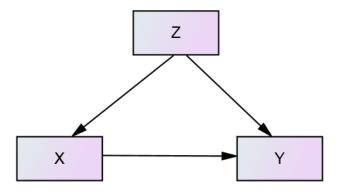
Common Terms

1 replication 2a explanation

spurious mediation

moderation

2b interpretation

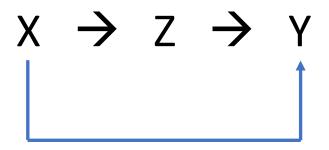

- 3 specification
- 4 suppression
- 5. distortion

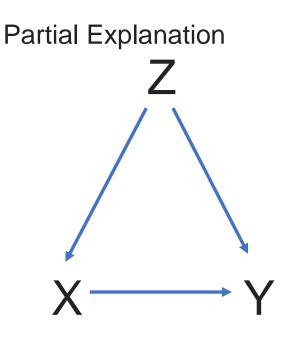
confounding intervening interaction

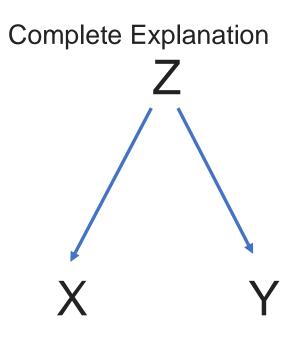
Summary Notes on Statistical Elaboration J. Fletcher

Name of Effect	Symbolic	Crosstab	Regression
	Representation	Results	Results
Replication		Same results in	X predicts Y with
	Irrespective of Z	control tables as	and without Z
	X←→Y	in original table	being in
		without controls	equation
Interpretation		All control tables	Entering Z into
(mediation)		show weaker	equation reduces
	x→z→Y	relationship than	or eliminates X's
		original table	influence on Y
Explanation	Z	All control tables	Entering Z into
		show weaker	equation reduces
	$X \leftarrow / \rightarrow Y$	relationship than	or eliminates X's
		original table	influence on Y
Specification	If Z = 1	Only one (or	An interaction
(moderation)	X←→Y	some) of control	term of the form
	lf Z ≠ 1	tables show	X*Z predicts Y
	X←/→Y	relationship from	
	Or, preferably	original table	
	X		
	Z → XZ → ¥		
Suppression	Without control	Control tables	Entering Z into
	for Z:	reveal a	equation allows
	X←/→Y	relationship that	X to predict Y
	With control for	was not evident	
	Z	in original table	
	x←→r	without controls	
Distortion	Another pattern	Control tables	Entering Z into
	of results	show complex	equation
		pattern of results	produces
			complex pattern

Graphic display of Explanation


Graphic display of complete interpretation




Complete Interpretation

 $X \rightarrow Z \rightarrow Y$

Partial Interpretation

