Images Lecture 8B
Poli 101 UCSC

Lazarsfeld's Three Criteria in Assessing Causation (supplemented by K\&W \#4)

| | | Surveys |
| :--- | :--- | :--- |\quad| Experiments |
| :--- |
| 1. | Association | measures of association | measures of assoc/sig |
| :--- | :--- |
| 2. | Direction of influence |
| 3. | Elimination of rival expl's | | must be inferred |
| :--- |
| statistical control |\quad| product of control |
| :--- |

Ordinary Multiple Regression

Regression variables $=$ DepVar IndVar1 IndVar2 IndVar3 ...
/statistics coeff r tol
/descriptive = n
/dependent = DepVar
/method = enter.

Hierarchical Multiple Regression

```
Regression variables = DepVar IndVar1 IndVar2 IndVar3 ...
    /statistics coeff r tol
    /descriptive = n
    /dependent = DepVar
    /method = enter IndVar1
    /method = enter IndVar1 IndVar2
    /method = enter IndVar1 IndVar2 IndVar3.
```


Elaboration Paradigm
 (things that can happen in control tables)

Common Terms

1.replication

2a explanation
2b interpretation
3. specification
4. suppression
5. distortion

Elaboration Paradigm

(things that can happen in control tables)

Elaboration Terms		Psych Terms	Common Terms
1. replication 2a explanation spurious	confounding 2b interpretation	mediation	intervening
3 specification	moderation	interaction	
4 suppression			
5 distortion			

Elaboration Paradigm
 (things that can happen in regression)

Elaboration Terms

1. replication

2a explanation
2b interpretation
3 specification
4 suppression
5 distortion

What we see

same results as original IV-DV relationship
control reduces or eliminates original IV-DV relationship
control reduces or eliminates original IV-DV relationship
an interaction term predicts the DV
control increases or reveals an IV-DV relationship
entering control results in complex pattern

Summary Notes on Statistical Elaboration

J. Fletcher

Name of Effect	$\begin{array}{lr} \text { Crosstab } & \text { Symb } \\ \text { Results } \end{array}$	epresentation	ion Results
Replication	Same results in control tables as in original table without controls	Irrespective of Z $x \leftarrow \rightarrow Y$	X predicts Y with and without Z being in equation
Explanation	All control tables show weaker relationship than original table	$\underset{x \leftarrow / \rightarrow Y}{\sim}$	Entering Z into equation reduces or eliminates X 's influence on Y
Interpretation (mediation)	All control tables show weaker relationship than original table	$X \rightarrow Z \rightarrow Y$	Entering Z into equation reduces or eliminates X 's influence on Y
Specification (moderation)	Only one (or some) of control tables show relationship from original table	$\begin{aligned} & \text { If } Z=1 \\ & X \leftarrow \rightarrow Y \\ & \text { If } Z \neq 1 \\ & X \leftarrow / \rightarrow Y \\ & \text { Or, preferably } \\ & X \\ & Z>X Z \rightarrow Y \end{aligned}$	An interaction term of the form $X * Z$ predicts Y
Suppression	Control tables reveal a relationship that was not evident in original table without controls	Without control for Z: $X \leftarrow / \rightarrow Y$ With control for Z $x \leftarrow \rightarrow Y$	Entering Z into equation allows X to predict Y
Distortion	Control tables show complex pattern of results		Entering Z into equation produces a complex pattern

```
regression variables = DepVar IndVar1 IndVar2 IndVar3
    /statistics coeff r tol
    /descriptive = n
    /dependent = DepVar
    /method = Enter IndVar1
    /method = Enter IndVar1 IndVar2
    / method = Enter IndVar1 IndVar2 IndVar3.
```


regression variables=RawMJ3 democrat5 female
/statistics anova coeff r tol
/descriptives = n
/dependent = RawMJ3
/method = enter democrat5
/method = enter democrat5 female.

Model		Unstandardized Coefficients		Standard Coefficients Beta	Sig.	Tol
		B	Std. Error			
1	(Constant)	1.108	. 072		. 000	
	Democrat5	. 734	. 111	. 209	. 000	1.000
2	(Constant)	1.277	. 076		. 000	
	Democrat5	. 808	. 110	. 230	. 000	. 987
	female	-. 429	. 072	-. 186	. 000	. 987

$2 \times .111=.222$
$.734+.222=.956$
The b value didn't change by this much. Therefore, we have replication.
regression variables=RawMJ3 democrat5 interest
/statistics anova coeff r tol
/descriptives = n
/dependent = RawMJ3
/method = enter democrat5
/method = enter democrat5 interest.

		B	Std. Error	Beta	sig	Tol
1	(Constant)	1.108	. 072		. 000	
	Democrat5	. 738	. 111	. 210	. 000	1.000
2	(Constant)	. 735	. 113		. 000	
	Democrat5	. 758	. 110	. 215	. 000	. 998
	interest	. 545	. 128	. 133	. 000	. 998

regression variables=RawMJ3 democrat5 black hisp asian
/statistics anova coeff r tol
/descriptives = n
/dependent = RawMJ3
/method = enter democrat5
/method = enter democrat5 black hisp asian.

		B	Std. Error	Beta	sig	Tol
1	(Constant)	1.108	.072		.000	
	Democrat5	.734	.111	.209	.000	1.000
2	(Constant)	1.184	.073		.000	
	Democrat5	.904	.113	.257	.000	.923
	Black	-.055	.148	-.012	.709	.927
	Hisp	-.651	.091	-.233	.000	.880
	Asian	-.196	.108	-.057	.071	.938

The important point for you to take away here is that the empirical results supporting explanation and interpretation are identical. In both instances the original relationship is substantially reduced or sometimes completely goes away in the control tables.

Complete Explanation

Partial Explanation

Complete Interpretation (mediation)

$$
X \rightarrow Z \rightarrow Y
$$

Partial Interpretation (mediation)

$$
\mathrm{X} \rightarrow \mathrm{Z} \rightarrow \mathrm{Y}
$$

regression variables=RawMJ3 democrat5 liberal5
/statistics anova coeff r tol
/descriptives = n
/dependent = RawMJ3
/method = enter democrat5
/method = enter democrat5 liberal5.

Model		Unstandardized Coefficients		Standard Coefficients Beta	Sig.	Tol
		B	Std. Error			
1	(Constant)	1.108	. 072		. 000	
	Democrat5	. 743	. 111	. 212	. 000	1.000
2	(Constant)	. 797	. 077		. 000	
	Democrat5	. 189	. 122	. 054	. 122	. 762
	liberal5	1.214	. 131	. 323	. 000	. 762

Predicting Attitudes toward Recreational Marijuana with Party Preference (Democrat5) \& Ideology (Liberal5) (Unstandardized coefficients)

Predicting Attitudes toward Recreational Marijuana with Party Preference (Democrat5) \& Ideology (Liberal5) (Standardized coefficients)

	Model 1	Model 2
democrat5	.212***	. 054
liberal5		.323***
$\overline{\operatorname{Adj} \mathrm{R}^{2}}$. 044	. 122
$\mathrm{N}=$	(950)	(950)

Democrat \rightarrow Liberal \rightarrow MJ3

Complete Explanation

Perhaps the most theoretically important results using statistical control come from with cases of interpretation. This is because they can help understand the mechanism by which $X \rightarrow Y$. As a result, statistical control using interpretation can be very important for understanding the political meaning of relationships.

Photo \rightarrow Emotion \rightarrow Mission

Photo \rightarrow Sad/Proud \rightarrow Mission

Elaboration Paradigm

Elaboration Terms Psych Terms Common Terms 1 replication 2a explanation 2b interpretation spurious mediation	confounding intervening	
3 specification	moderation	interaction
4 suppression		
5. distortion		

Summary Notes on Statistical Elaboration

J. Fletcher

Name of Effect	Symbolic Representation	Crosstab	
		Results	Results
Replication	Irrespective of Z $X \leftarrow \rightarrow Y$	Same results in control tables as in original table without controls	X predicts Y with and without Z being in equation
Interpretation (mediation)	$X \rightarrow Z \rightarrow Y$	All control tables show weaker relationship than original table	Entering Z into equation reduces or eliminates X 's influence on Y
Explanation	$\underbrace{z}_{x \leftarrow / \rightarrow y}$	All control tables show weaker relationship than original table	Entering Z into equation reduces or eliminates X 's influence on Y
Specification (moderation)	$\begin{aligned} \text { If } Z & =1 \\ X & \leftarrow \rightarrow Y \\ \text { If } Z & \neq 1 \\ X & \leftarrow / \rightarrow Y \end{aligned}$ Or, preferably $\underset{Z}{X}>X Z \rightarrow Y$	Only one (or some) of control tables show relationship from original table	An interaction term of the form X*Z predicts Y
Suppression	Without control for Z: $X \leftarrow / \rightarrow Y$ With control for Z $X \leftarrow \rightarrow Y$	Control tables reveal a relationship that was not evident in original table without controls	Entering Z into equation allows X to predict Y
Distortion	Another pattern of results	Control tables show complex pattern of results	Entering Z into equation produces complex pattern

Graphic display of Explanation

Graphic display of complete interpretation

Complete Interpretation

$$
X \rightarrow Z \rightarrow Y
$$

Partial Interpretation

$$
X \rightarrow Z \rightarrow Y
$$

Partial Explanation

Complete Explanation

