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INTRODUCTION 

The purpose of this guide is to provide both basic understanding of statistical concepts 

(know-why) as well as practical tools to analyse quantitative data in SPSS (know-

how). We wanted to keep the guide completely free of formulas (i.e. brain-freezing 

mathematical equations). In doing so, we have tried to explain everything at the most 

elementary level and only include aspects that are important in actual research. As 

such, this guide is pragmatic and research-oriented. Hopefully, you will find it useful.  

 

This guide consists of two parts. The first part (Chapters 1-5) concerns various aspects 

concerning data management and descriptive statistics. Next, we discuss issues related 

to statistical significance (Chapter 6). The following part deals with some basic types 

of statistical analysis, such as t-tests, ANOVA, chi-square, correlation analysis, and 

factor analysis (Chapters 7-10). Then we discuss theoretical and practical dimensions 

of regression analysis (Chapters 11-12) before continuing into how to actually conduct 

regression analysis, including interaction analysis (Chapters 13-17).  

 

There are two data materials used in the guide. The first is “SPSS_Data1” which is 

mostly based on a hypothetical data set available through SPSS. The second is 

“SPSS_Data2”, which is primarily based on several waves of data collection related 

to the Word Values Survey. Both data materials are available at: 

https://www.su.se/publichealth/english/education/a-guide-to-quantitative-methods  

 

General advice 

Keep all your files for the course/project in the same main folder and use sub 

folders to organise the files further. 

Save your files under appropriate names.  

Example: “Ericsson_Data_Lesson1_130603” 

Keep a copy of the original file, just in case. 

Example: “Ericsson _Data_Lesson1_Original” 

Do not forget to continuously save your file while you work with it. 

Always double-check that you have spelled values and labels correctly. 

If you delete or change something by mistake, it is often possible to undo the last 

change by holding down the Ctrl-key while pressing “z” on your key board. 

Use syntax! 

 

https://www.su.se/publichealth/english/education/a-guide-to-quantitative-methods
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Why syntax? 

 

The syntax is basically a text file where you can add comments and SPSS 

commands. The reasons for why everyone should use the syntax function are: 

 

 It is a way of documenting and archiving everything you have done with the 

data material. 

 It is easy to repeat parts or all of the analysis.  

 Other people involved in the data material can easily understand what you 

have done and how you have done it.  

 It saves an enormous amount of time.  
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1. THE SPSS ENVIRONMENT 

The SPSS environment may come across as rather confusing at first, but it is actually 

quite logical once you get a hang of it. In this part of the guide, we will discuss the 

following aspects of the SPSS environment: 

 

Outline 

1.1 General functions 

1.2 Variable view 

1.3 Creating a new data set 

1.4 Data view 

1.5 Syntax 

1.6 Output 
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1.1 General functions 

 

The Menu bar (“File”, “Edit” and so on) is located in the upper area. 

 

 
 

In the lower left corner, two tabs are available: Data View and Variable View. When 

you start SPSS, Variable View is default. 

 

File types 

 

SPSS uses three types of files with different functions and extensions: 

 

Type Extension Content 

Data set .sav Data and variables 

Syntax .sps Commands and comments 

Output .spv Results 

 

  



5 

 

Options 

 
The SPSS menu works similar to the menus in many other programs, such as Word 

or Excel. Some useful options are listed below: 

 

Option Description 

Open a file Go to File\Open and choose Data, Syntax or Output. 

Browse your hard drive to locate the file. Then click on 

Open. 

Save a file Go to File\Save As. Type in a descriptive name and then 

click Save. 

You can also choose to save only some of the variables 

into the new data set by clicking Variables (before saving) 

and then ticking the boxes next to the variables you want 

to keep. 

Overwrite a file Go to File\Save. 

Import a data set Go to File\Open\Data and choose the desired format next 

to Files of type. Browse the file and click on Open. 
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1.2 Variable view 

 

In Variable View, different columns are displayed. Each line corresponds to a 

variable. A variable is simply a quantity of something, which varies and can be 

measured, such as height, weight, number of children, educational level, gender and 

so forth.  

 

Column Function 

Name Name of the variable. It is your own choice, but make it 

understandable and do not use numbers or symbols as the first letter 

since SPSS will not accept it. Moreover, you cannot use spaces in the 

name.  

For example: “edu_level” 

Type Indicates the variable type. The most common is Numeric (only 

accepts numerical data, for example age or number of children) and 

String (also accepts letters, e.g. for qualitative questions). Typically, 

all responses in a questionnaire are transformed into numbers.  

For example: “Man”=0 and “Woman”=1, or “Non-smoker”=1, “Ex-

smoker”=2 and “Current smoker”=3.  

Width Corresponds to the number of characters that is allowed to be typed 

in the data cell. Default for numerical and string variables is 8, which 

only needs to be altered if you want to type in long strings of 

numbers or whole sentences. 

Decimals Default is 2 for numerical variables and will automatically be 

displayed as .00 in the data view, if not otherwise specified. 

Label The description of the variable. Use the question that the variable is 

based upon or something else accurately describing the variable.  

For example: “What is your highest level of education?” 

Values Here you can add labels to each response alternative.  

For example: For the variable gender, “Men” are coded as 0 and 

“Women” are coded as 1. Through the option Values you tell SPSS 

to label each number according to the correct response. Next to 

Value (below Value Labels), type in “0” and next to Label, type in 

“Men”. Then click Add. Next to Value (below Value Labels), type in 

“1” and next to Label, type in “Women”. Then click Add. 

Missing By default, missing values will be coded as “.” (dot) for numerical 

variables in the data set. For missing values in String variables, cells 

will be left blank. 
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There are some additional columns in Variable View, but just ignore them for now. 

Normally, they do not need to be altered. 

 

Options 

 

To alter the variable options, you may click the cells. Some columns can be typed 

directly into, while you need to press the arrows or dots that appeared when you click 

in the columns. It is often possible to use “copy and paste” here – this may efficient 

when you, for example, have several variables with the same Values.  

 

 

 

 

If you want to delete a variable, select the numbered cell to the left of the variable 

and then right-click and choose Clear. 
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1.3 Creating a new data set 

 

If you have a questionnaire, you can easily create the corresponding data structure in 

Variable View in SPSS. For example: 

 

Name Type Width Decimals Label Values Missing 

gender Numeric 1 0 Gender 0=Man 

1=Woman 

None 

srh Numeric 1 0 Self-rated 

health 

1=Poor 

2=Fair 

3=Good 

4=Excellent 

None 

income Numeric 10 0 Disposable 

income 

None None 
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1.4 Data view 

 

Once the structure of the data set is determined, it is time to take a look at Data View. 

Access this view by clicking on the tab named Data View in the lower left corner. 

 

 
 

Here, each column corresponds to a variable, whereas each row corresponds to a case 

(most commonly an individual). It is possible to change the order of the variables by 

highlighting a column and “drag and drop”. You may also change the width of the 

column by placing the mouse over the right border of a column (next to the name of 

the column), pressing down the button and then “drag and drop”.  

 

If you are creating a new data set, simply type in your data, one row (and one column) 

at a time. Use the left and right arrow key on your key board to move between cells. 

 

Make sure that you have chosen the right Type of variable before you enter your data 

(i.e. Numeric or String). 



 

10 

 

1.5 Syntax 

 

The syntax is presented in a new window called IBM SPSS Statistics Syntax Editor. 

Note that the Menu bar is very similar to the one available through Data View and 

Variable View. In order words, you do not always have to go back to Data View or 

Variable View to access the Menu bar. 

 
 

 
 

There are two text areas: the big one to the right is where all commands will be 

displayed. What is a command? It is basically when you tell SPSS that you want it to 

perform a specific test or analysis or to create a table or a graph. All these features 

have their own commands. To the left, you will have a “short list” of the same 

commands. 

 

How to include a command in the syntax 

 

There are two ways of including a command in the syntax. The first alternative is to 

go through the menu system. For all features provided in the Menu bar, you will have 

a button called Paste. If you click on this button, the correct command will be pasted 

into the syntax you currently have open. If you have several syntax windows open, 

make sure that the command is pasted into the correct one.  
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The second alternative is to write the command yourself. If you have never used SPSS 

syntax before, this is not recommended in the beginning. However, once you have 

created a “stock” of commands using Paste, you may start re-using these commands 

by copy, paste and then alter them directly in your syntax. When you write your own 

commands in the syntax, the functions will have different colours. The command will 

be red if it is not written properly. 

 

Once you have a long list of commands in your syntax, it may be difficult to keep 

track of them. It is therefore highly recommended that you comment your syntax. You 

may add a heading above each command, and also make notes of interesting findings 

etc. In order to insert a comment, write an asterisk (*) before the comment begins. 

End the comment with a dot/period (.). If the comment is not framed with an asterisk 

and a dot, it may be tangled up in the commands. You can easily double-check that 

the comments are correctly entered, because if they turn grey if they are.  

 

 

Examples 

* This is a frequency table of gender. 

* Linear regression analysis of educational level (independent variable) and 

income (dependent variable). 
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How to execute the command 

 

To execute the command, highlight all the rows for that specific command and press 

the big green arrow below the Menu bar in the syntax window. You do not have to 

highlight one command at a time - it is possible to execute several commands at once. 

If you have added comments to your syntax, make sure that they are grey (i.e. 

inactive), otherwise SPSS will take them for (faulty) commands. 
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1.6 Output 

 

Everything you order in SPSS (e.g. graphs, tables, or analyses) ends up in a window 

called Output. In the area to the left, all the different steps are listed. It is possible to 

collapse specific steps by clicking on the box with the minus sign (and expand it again 

by clicking on the same box, now with a plus sign). In the area to the right, your actual 

output is shown. First, you see the syntax for what you have ordered, and then you get 

the tables or graphs related to the specific command.  
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2. BASIC STATISTICAL 

CONCEPTS 

The first part of this chapter is devoted to issues related to populations and samples. 

These are things you need to be aware of in order to make correct judgements of your 

data material. Before it is possible to describe the variables in the data set through the 

different commands in SPSS, we need to know more about the specific variables. 

Here, we will address two major aspects: measurement scales and distributions.  

 

Outline 

2.1 Study population and sampling 

2.2 Measurement scales 

2.3 Distributions 
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2.1 Study population and sampling 

 

Before we start looking into our data, we need to establish what our population is, 

since the population is what we want to say something about. A population is often 

referred to by “N”.  

 

 

 

 

 

 

 

 

 

 

 

 

 

A population can be almost anything: We have populations which are geographically 

defined, such as the world, a country or a city; we have age-defined populations such 

as teenagers, infants and elderly; and also specific groups such as women, drug 

addicts, teachers, master students, and so on. 

 

Population (N) 
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Sampling 

 

It is seldom the case that we examine the whole population which we have chosen. 

Instead, we use sampling – that basically means that we take a smaller sample of the 

population: a study sample. A study sample is often denoted by “n”. The reasons 

behind sampling are primarily that it is very costly and time consuming to collect data 

for the entire population. However, sometimes you can include the whole population 

- like if you have small populations, such as one school or one hospital or one 

company (this is often referred to as a case study). Another example is when you use 

national registers (then you usually do not have to considered aspects such as time or 

cost since the data is already available).   

 

 

 

 

 

 

 

 

 

 

 

 

There are many different sampling techniques available. Generally, they can be 

categorised into two types that include several sub types:  

 

Types of sampling  

Non-probability sampling 

Snowball Finding respondents through already selected respondents 

Quota Adding suitable individuals until a certain quota is achieved 

Convenience Easy access of respondents 

Probability sampling 

Random Every individual has the same chance of being selected 

Systematic Sampling with intervals, e.g. every fifth of a list 

Stratified Random sampling from different groups 

Clustered Random sampling of groups, choosing all individuals from 

these groups 

 

 

Sampling 

Study sample (n) 

Population (N) Study sample (n) 
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Non-probability sampling is most common in small-scale studies, marketing research, 

interview studies and studies like that. Snowball sampling means that you start out 

with some respondents and ask them to find other suitable respondents (like friends 

or other people they know). Quota sampling is often used in marketing research. For 

example, the researchers wants to have 100 respondents who have tried a new coffee 

brand and stands outside the store until they have found 100 persons who have bought 

that specific brand. Then we have convenience sampling. This is when you pick 

respondents who are easy to get access to, like friends, family, or members of an 

organisation that you are a member of yourself, and so on.  

 

The other type of sampling is probability sampling. First, we have the random 

probability sampling, which postulates that every individual in the population should 

have the equal chance of being selected. Another procedure is the systematic 

sampling, where you, for example, draw every fifth or seventh from a list of people. 

Stratified sampling is when you draw random samples from some specific groups. For 

example if you want to compare labour market outcomes between Swedes and 

immigrants, you may not get a large enough sample of immigrants if making a random 

sampling. Therefore you can draw a larger random sample from the smaller group. 

Finally, we have clustered sampling. Perhaps you start out by drawing a random 

sample of schools and then select all students attending ninth grade in these schools. 

 

Probability sampling constitutes the foundation of quantitative data analysis. Why is 

it so important? Well, we want our study sample to be “representative”. This means 

that it should have the same characteristics as our population. This is a requirement to 

be able to draw conclusions about the population based on the study sample (also 

known as generalizability).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sampling 

Study sample (n) Population (N) 

Representativeness 
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Missing data: attrition and non-response 

 

An issue that almost all quantitative researchers deal with has to do with “missing 

data”. What is missing data? Well, when we have defined our population and 

conducted a probability sampling, we start collecting data for the individuals in our 

study sample – either through questionnaires or registers (or both). It is very seldom 

the case, however, that we get complete information for all individuals. We thus get 

missing data. When we use register data, missing data is commonly called “attrition”, 

and when we use survey data (i.e. questionnaire data), missing data is usually called 

“non-response”. If we have problems with missing data, we may not be able to draw 

conclusions about the population based on the study sample. This is discussed in 

further detail in Section 12.5.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sampling 

Study sample (n) 

Population (N) 

Representativeness 
 

Missing 
data 
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2.2 Measurement scales 

 

Types of scale 

 

We use a scale to make the measurements of a variable, and the characteristics of the 

scale determine the characteristics of the data we collect and, in turn, how we describe 

our data. Generally speaking, there are four measurement scales: nominal, ordinal, 

ratio and interval. Nominal and ordinal variables are often called “categorical” or 

“qualitative”, whereas ratio and interval variables are often referred to as “continuous” 

or “quantitative”. 

 

Name Type 

Nominal 
Categorical/qualitative 

Ordinal 

Ratio 
Continuous/quantitative 

Interval 

 

It should also be noted that a nominal variable with only two categories/values is 

called “dichotomous” (or “binary, or “dummy”) whereas a nominal variable with 

more than two categories is called “polytomous”. 

 

Differences between the scales 

 

These scales differ in three important ways: hierarchy, distance and zero point. 

 

Checklist  

Is it possible to arrange/order the values 

hierarchically? 

Yes/No 

Is it the same distance between the values? Yes/No 

Does the scale have an absolute zero point? Yes/No 

 

What does “arrange/order the values hierarchically” mean? If we take gender as an 

example, it is not reasonable to say that “Man” is less or more than “Woman”. As 

another example, we can take ethnicity: it is not reasonable to see “Danish” as less or 

more than “Finnish”. For variables such as self-rated health, on the other hand, it is 

possible to say that “Excellent health” is better than “Good health”. Moreover, it is 

possible to say that the grade “A” is better than the grade “B”.   
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What does “distance” mean? If we take income as an example, we know that 1000 

dollars are twice as much as 500 dollars, and 2000 dollars are twice as much as 1000 

dollars. The same logic applies to variables such as age: it is the same distance 

between 2 years and 4 years as between 6 years and 8 years. Thus, having the same 

distance between the values means that the differences between two values are the 

same regardless of which part of the scale you are looking at.  

 

What does “absolute zero point” mean? Basically, it means that the scale cannot have 

negative values. It is possible for the temperature to be minus 10 degrees Celsius, but 

is not possible to have less than zero years of schooling or having less than zero days 

of unemployment.  

 

Examples 

 

Below, we can see some examples of variables on the different measurement scales.  

 

Scale Values Examples 

Nominal Order values: No 

Same distance: No 

Absolute zero point: Not applicable 

Yes/no questions 

Gender 

Ethnicity 

Ordinal Order values: Yes 

Same distance: No 

Absolute zero point: Not applicable 

Attitude questions 

Self-rated health 

Educational level 

Ratio Order values: Yes 

Same distance: Yes 

Absolute zero point: Yes 

Age 

Income 

School marks 

Interval Order values: Yes 

Same distance: Yes 

Absolute zero point: No 

Temperature (Celsius) 

 

A nominal variable is hence a variable for which the values cannot be ranked, and we 

do not have the same distance between the values, e.g. gender or questions that can be 

answered with yes or no. Ordinal variables are similar, but here the values can be 

ranked, such as for self-rated health: “Excellent is better than “Good”; “Good” is 

better than “Fair”; and “Fair” is better than “Poor”. However, for ordinal scales we do 

not have the same distance between the values: the “amount” of better health is not 

necessarily the same between “Poor” and “Fair” as between “Good” and “Excellent”. 

The ratio scale is similar to the ordinal scale, but here we do have the same distance 

between the values: for example, we know that 10 years of schooling is twice as much 
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as 5 years of schooling. The interval scale is similar to the ratio scale, but here we do 

not have an absolute zero point.  

 

Types of values 

 

It is possible to distinguish between two types of values: discrete and continuous. 

Discrete values can only assume “whole” values, such as “Man”, “Women”, “Green”, 

“Car”, and “House”. Continuous values can assume any value along a scale, such as 

“3.5 years”, “58.3 seconds”, and “163.5 centimetres”. Note, however, that continuous 

variables (i.e. on a ratio or interval scale) do not necessarily have continuous values. 

For example, number of cars is a ratio variable but it has discrete values: while the 

average number of cars in a population may be 0.8, it is not correct (although many 

do) to say that any given individual in a population has 0.8 cars (since a car is a 

“whole” value”).  

 

Name Type 

Discrete “Whole” values 

Continuous Any value 
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2.3 Distributions 

 

For continuous variables (i.e. on a ratio or interval scale) it is important to know what 

the distribution of values in the variable looks like.  

 

Normal distributions 

 

One common type of distribution is the “normal distribution”. Many statistical 

methods are based on normal distributions.  

 

 
 

The above figure is an example of a typical normal distribution. Here are some basic 

facts about the normal distribution: 

 

Basic facts about normal distributions 

Always bell-shaped. 

The peak always indicates the mean value.  

Always symmetrical, i.e. the tails on each side of the mean are equally large. This 

means that 50 % of the values are on one side of the mean, and 50 % of the values 

are on the other side of the mean. 

The area under the curve is always 1 (100 % of the values). 

 

Below is an example of a (normal) distribution of height among Swedish men at the 

time of military service enlistment (in Swedish: “lumpen”). In this example, the mean 

height is about 180 centimetres. The less common a certain height gets, the smaller 

the area under the curve. Here, the tails are about equally large on both sides of the 

mean, suggesting that it is approximately as common for individuals in the sample to 

be shorter than the mean as it is for them to be taller than the mean.  
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Normal distributions can look quite different. The figures below are all examples of 

normal distributions. The difference lies in the amount of spread of the values: because 

the shape of a normal distribution is not only defined by the mean value, but by the 

standard deviation! 
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But what is “standard deviation”? A simple definition is that it expresses how much 

variation exists from the mean for a given variable. If we have a low standard 

deviation, it suggests that the individuals in our data have values close to the mean, 

and if we have a high standard deviation, it indicates that the values are more spread 

out over a large range of values.  

 

 

 
 

The empirical rule of normal distributions tells us the following (see the figure 

above): 

 

 68 % of the values fall within -1 and +1 standard deviations. 

 95 % of all values fall within -2 and +2 standard deviations. 

 Nearly 100 % of all values fall within -3 and +3 standard deviations. 

 

 

Example 

We have collected information about weight for a sample of individuals. If the 

mean weight in this sample was 70 kilos and the standard deviation was 5 kilos, 

the empirical rule would give us the following information:  

 

68 % of the individuals have a weight of 65-75 kilos: 

Lower limit: 70 kilos - (5 kilos*1); upper limit: 70 kilos + (5 kilos*1) 

 

95 % of the individuals have a weight of 60-80 kilos: 

Lower limit: 70 kilos - (5 kilos*2); upper limit: 70 kilos + (5 kilos*2) 

 

Nearly 100 % of the have a weight of 55-85 kilos: 

Lower limit: 70 kilos - (5 kilos*3); upper limit: 70 kilos + (5 kilos*3) 
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As long as we have information about the mean value and the standard deviation, it is 

possible to do the same calculation for all the normal distributions. Remember that a 

more pronounced peak indicates a low standard deviation, whereas a flat distribution 

indicates a high standard deviation.  

 

Skewed distributions 

 

There are other types of distribution. One very common type of distribution is the 

“skewed distribution”. Here are some facts about skewed distributions: 

 

Basic facts about skewed distributions 

Always asymmetrical = tails are different, i.e. the empirical rule does not apply 

Skew can be positive (right tail longer) or negative (left tail longer) 

 

Examples of a positively skewed distribution (like the figure to the left) are: number 

of hospital visits, number of days in unemployment, number of telephone calls during 

a day. Most individuals will have the value zero or a low value, whereas a few will 

have increasingly high values. 

 

Examples of a negatively skewed distribution (like the figure to the right) are: age of 

retirement, or a very easy test. Most individuals will have high values, and then a few 

will have very low values.  

 

 

 
               Positively skewed distribution     Negatively skewed distribution 
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The skewness of the distribution can be indicated by two types of measure: 

skewness and kurtosis.  

 

Facts about the skewness measure 

Measure of the symmetry of a distribution. 

Negative skewness value = the distribution is skewed to the right (longer tail to 

the left) 

Positive skewness value = the distribution is skewed to the left (longer tail to the 

right) 

A perfect normal distribution has a skewness of 0 

Skewness value between -2 and +2 is usually considered acceptable 

 

 

Facts about the kurtosis measure 

Measure of the shape (or the “peakedness”) of a distribution 

A perfect normal distribution has a kurtosis of 0 (mesokurtic distribution) 

Kurtosis value above 0 = Leptokurtic distribution (sharper peak and longer/fatter 

tails) 

Kurtosis value below 0 = Platykurtic distribution (rounder peak and 

shorter/thinner tails) 

Kurtosis value between -2 and +2 is usually considered acceptable 
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3. DESCRIPTIVE 

STATISTICS 

When we know about the measurement scale and the distribution of the variables in 

our data set, we can decide on how to best describe our variables. In this type of 

exploratory data analysis, we use a set of tables and graphs as well as measures of 

central tendency and variation. Here, we will address the following types of 

description: 

 

Outline 

3.1 Tables 

3.2 Graphs 

3.3 Measures of central tendency 

3.4 Measures of variation 

 

Two types of tables will be covered: frequency table and cross table. With regard to 

graphs, we will discuss bar chart, pie chart, histogram and scatterplot. For measures 

of central tendency, the mean, mode, and median are addressed. Moreover, some 

examples of measures of variation will be included here, namely minimum, 

maximum, range, and standard deviation.   
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Going back to what we learnt about measurement scales and the distributions, this is 

generally how you should match the different types of variables with the different 

types of description: 

 

Type of variable  

Categorical  

(nominal/ordinal) 

Frequency table 

Cross table 

Bar chart 

Pie chart 

Mode 

Continuous  

(ratio/interval) 

Histogram 

Scatterplot 

Mean (if normal distribution) 

Median (if skewed distribution) 

Min 

Max 

Range 

Standard deviation 
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3.1 Tables 

 

Tables are useful if one wants to see the distribution of values for categorical (nominal 

or ordinal) variables. Here, we will discuss frequency tables and cross tables. 

 

A frequency table is a simple but very useful description of one variable and gives us 

both the frequency and various types of percentages of individuals with the different 

values.  

 

Column Content 

Frequency The number of individuals in the different categories. 

Percent The distribution of percent also taking into consideration any 

missing information. This means that if some individuals 

would have missing information about gender, the 

percentages in this column would be dependent upon that. 

Valid Percent Same as Percent but does not take missing into account. This 

column is what we primarily focus on. 

Cumulative 

percent 

Adds the percentages from top to bottom. 

 

Below, compare the first table with the second table to see the differences between 

Percent and Valid Percent (in the second table, the information about gender has been 

removed for one of the individuals). 
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A cross table is a description of how individuals are distributed according to two 

variables. The table in the example below, is a cross table with the variables gender 

and health. Here, it is possible to see the distribution of health by gender, and vice 

versa.  

 

 

 
 

The first table below also includes “column percentages”, demonstrating the 

distribution of health according to gender. The second instead adds “row 

percentages”, demonstrating the distribution of gender according to health status. 

Note that the frequencies (i.e. the number of individuals) in the cells are the same, but 

the percentages are different since the focus shifts between the tables. If you find this 

difficult to separate in your mind, one good advice is perhaps to see where the 

percentages add up to 100 % in Total - in the rows or in the columns.  

 

 

 

 

 

Important to note is that if we would have individuals with missing information with 

regard to gender or health, these would be excluded from the cross table. Therefore, 

it is important to always look at the two variables used in a cross table separately 

(through e.g. frequency tables) as well.  
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3.2 Graphs 

 

For categorical variables, bar charts or pie charts may be useful. For continuous 

variables, we can use histograms (one variable) or scatterplots (two variables).  

 

A bar chart is like an illustration of a frequency table. On the x-axis (horizontal axis) 

you see the different values (or categories) of the variable and on the y-axis (vertical 

axis) you can choose to see either the percentage of individuals in each category (like 

in the graph below) or the number of individuals in each category.  

 

 

 
 

A pie chart can also be seen as a simple illustration of a frequency table. The slices 

represent the different values (or categories) of the variable and they can be specified 

in terms of the percentage of individuals in each category (like in the graph below) or 

the number of individuals in each category. 

 

 

 

 

 

 

 

 



 

32 

 

 

 
 

A histogram is similar to a bar chart but, unlike the bar chart, it is suitable for 

continuous variables. Here, a reference line representing the normal distribution curve 

can be added. The histogram will give us an idea about whether the distribution (of 

the continuous variable) is normal or skewed. 
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When we had two categorical variables, we could produce a cross table to see how 

these two variables were related. If we have two continuous variables, we may use 

something called a scatterplot instead. Each dot in the scatterplot represents one 

individual in our data. We may also include a reference line here, to see if we have a 

pattern in our data: for example, if high or low values in one variable correspond to 

high or low values in the other variable. In the scatterplot below, we can see that 

increasing school class size seems to be related to increasing scores on a cognitive 

test, at least to some degree. 
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3.3 Measures of central tendency 

 

Central tendency can be defined as measures of the location of the middle in a 

distribution. The most common types of central tendency are: 

 

Measure Definition 

Mean The average value 

Median The value in the absolute middle 

Mode The most frequently occurring value 

 

The mean is perhaps the most commonly used type of central tendency and we get it 

by dividing the sum of all values by the number of values. 

 

 

Example 

We have four fishes that weigh:  

 

 

 

         1.1 kilos                    0.8 kilos                    1.1 kilos                    1.0 kilos 

 

What is the mean? 

First we add the values together: 1.1+0.8+1.1+1.0=4.0 

Then we divide the sum of the values by the number of values: 4.0/4=1. 

The mean is thus 1 kilo. 

 

 

The median - i.e. the value in the absolute middle of the distribution - is obtained by 

sorting all the values from low to high and then identifying the value in the middle of 

the list. 

 

 

Example 

We have nine individuals who are of the following heights: 

 

 

158 cm  159 cm  164 cm  165 cm  173 cm  174 cm  175 cm 179 cm 181 cm  

The median is thus 173 cm. 
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Note that when we have an odd number of values, it is easy to identify the value in 

the absolute middle of the distribution. When we have an even number of values, we 

get the median by adding the two values in the middle together and dividing the sum 

by 2.   

 

The mode - or “type” - is defined as the most frequently occurring value in a 

distribution. Here as well, one starts by sorting responses from the lowest to the 

highest value and then identifies the most common value. 

 

 

Example 

We have information about the number of cars in the household: 

 

 

  

 

 

 

1 car          1 car           1 car          1 car            2 cars          2 cars           3 cars 

 

The mode is thus 1 car (since this is the most common value). 

 

 

The choice of type of central tendency is based on a) the measurement scale of the 

variable and b) the distribution of the variable. Generally, if the variable is categorical 

(nominal or ordinal), the mode is preferred. If the variable is continuous (ratio or 

interval), the mean or the median is preferred. In the latter case, the mean is chosen if 

the variable is normally distributed and the median is chosen if the variable has a 

skewed distribution.  

 

Scale Type Central tendency 

Nominal 
Categorical Mode 

Ordinal 

Ratio 
Continuous 

Normal distribution: Mean 

Skewed distribution: Median Interval 

 

Why should one not use the median or the mean for categorical variables? For nominal 

variables, it is easy to give an answer. Let us take country of birth as an example. In 

this example, the variable is coded into four categories: 1) Sweden, 2) China, 3) 

Canada, and 4) Norway. This is clearly a nominal variable. Since the order of the 
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categories is random (i.e. the order of the categories does not really matter), the 

location of the absolute middle in the distribution would not tell us anything 

information about the variable: the “content” of the middle would change completely 

if we changed the order of the categories. Let us take gender (which is also on a 

nominal scale) as another example: it would not make any sense to give the mean or 

median of gender. For some ordinal variables, however, the median is sometimes used. 

For example, if we have five categories of occupational class, which can be ranked 

from lower class to upper class, it may be interesting to give the value of the median 

(for example, in this case, the median could be lower non-manuals which would tell 

us something about the distribution of values).      

 

Why it is important to consider the distribution of the variable for continuous variables 

before we decide on the type of central tendency? If we take a look at the figures 

below, we can draw the following conclusions: if we have a perfectly normally 

distributed variable, the mean, median and mode would all be the same. However, if 

the distribution is skewed, the median would be a better description of the location of 

the middle in the distribution.   
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3.4 Measures of variation 

 

Besides the mean, the median and the mode, we may use some measures of variation 

to describe our variables further. Here are some of the most common measures of 

variation: 

 

Measure Definition 

Min The lowest value 

Max The highest value 

Range The difference between the lowest and highest value 

Standard deviation The dispersion of values from the mean 

 

These measures are most suitable for continuous variables (i.e. ratio or interval) but 

sometimes min, max, and range are used for ordinal variables as well. However, they 

cannot be used for nominal variables (for the same reason as why we do not use mean 

or median to describe nominal variables).  
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4. PRODUCING 

DESCRIPTIVE STATISTICS 
IN SPSS 

This part of the guide will describe how to use SPSS to produce the various tables and 

graphs as well as measures of central tendency and variation previously discussed.  

 

Outline 

4.1 Descriptives 

4.2 Frequency table 

4.3 Cross table 

4.4 Bar chart 

4.5 Pie chart 

4.6 Histogram 

4.7 Scatterplot 

4.8 Edit graphs 
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4.1 Descriptives 

 

Quick facts  

Number of variables At least one 

Scale of variable(s) Continuous (ratio/interval) or ordinal 

 

The Descriptives function is used primarily for continuous variables (i.e. 

ratio/interval) but could also be used for some ordinal variables that are approximately 

continuous (e.g. rating measures). The SPSS function allows you to order the 

following statistics: 

 

Types of 

statistic 

 

Mean Mean value 

Sum Sum of all values 

Stddev Standard deviation 

Min Minimum (smallest) observed value 

Max Maximum (largest) observed value 

Variance Variance 

Range The difference between the minimum value and the maximum value 

Semean Standard error of the mean 

Kurtosis Kurtosis and standard error of kurtosis 

Skewness Skewness and standard error of skewness 
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Descriptives: Function 

 

 

 
1. Go to the Menu bar, choose Analyze\Descriptive Statistics\Descriptives.  

2. This will open up a new window called Descriptives. 

3. A small window will open, where you see two boxes.  

4. In the left box, all your variables are displayed. Here you choose the 

variable(s) you want to get the measures of central tendency and/or 

variation for. In other words, if you want to, you can choose several 

variables here, and SPSS will produce descriptives for all of them. 

5. Click on the small arrow between the boxes to transfer the variable(s) to 

the box to the right.  

6. Click on Options.  

7. Tick the boxes for the measures you want to have.  

8. Click on Continue to close the small window.  

9. Click on OK to close the Descriptives window in order to get the results 

in your Output window.  
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Descriptives: Syntax 

 

  

 
DESCRIPTIVES VARIABLES=VARNAME 

  /STATISTICS=MEASURES. 

 

 
VARNAME    Insert the name of the variable you want to use. 

 

MEASURES      Insert the measures you want to produce. 

For example:  

MEAN SUM MIN MAX RANGE STDDEV 
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Descriptives: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

DESCRIPTIVES VARIABLES=age 

  /STATISTICS=MEAN MIN MAX RANGE STDDEV. 

 

 
age    Age in years (Min=18; Max=79) 

 

 

  



 

43 

 

Output 

 

In the table called Descriptive Statistics, all statistics you ordered will be displayed – 

one type of statistic per column.  
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4.2 Frequency table 

 

Quick facts  

Number of variables At least one (one table will be produced for each 

variable) 

Scale of variable(s) Categorical (nominal/ordinal) 

 

This function is used primarily for categorical variables (i.e. nominal/ordinal) but can 

be used for any type of variable; the main concern is that the table becomes too lengthy 

if there are many categories/values in the variable. The Frequencies function does not 

only allow us to create a frequency table, it is also possible to produce a variety of 

statistics. 

 

Types of statistic  

Frequency The absolute number of observations within each category 

Percent The percentage of observations within each category (incl. 

missing) 

Valid Percent The percentage of observations within each category (excl. 

missing) 

Cumulative 

Percent 

Accumulated percentage across categories 

Mean The average value 

Median The value in the absolute middle 

Mode The most frequently occurring value 

Sum Sum of all values 

Std. deviation Standard deviation 

Variance Variance 

Range The difference between the minimum value and the 

maximum value 

Minimum Minimum (smallest) observed value 

Maximum Maximum (largest) observed value 

S.E. mean Standard error of the mean 

Skewness Skewness and standard error of skewness 

Kurtosis Kurtosis and standard error of kurtosis 

Quartiles Cut-off values for four groups 

Cut points Cut-off values for a selected number of groups 

Percentiles Selected cut-off values for percentiles 
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Besides the frequency table itself and the types of statistic listed above, the 

Frequencies function makes it possible to order some specific graphs. The default is 

that no graph is produced, but you may change this to include a bar chart, a pie chart, 

or a histogram. If you choose a histogram, you may also add a normal curve. If you 

do order a graph, it is recommended that you go with the option of showing 

percentages rather than frequencies.  

 
Graphs  

Bar chart See Section 4.4 for detailed information 

Pie chart See Section 4.5 for detailed information 

Histogram See Section 4.6 for detailed information 
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Frequency table: Function  

 

 

 

1. Go to the Menu bar, choose Analyze\Descriptive Statistics\Frequencies.  

2. This will open up a new window called Frequencies. 

3. A small window will open, where you see two boxes. In the left box, all 

your variables are displayed.  

4. In the left box, you choose the variable(s) you want to get a frequency 

table for. In other words, you may choose several variables here, and 

SPSS will produce frequency tables for all of them. 

5. Click on the small arrow between the boxes to transfer the variable(s) to 

the box to the right.  

6. To order statistics for your variable, click on Statistics. In the new 

window called Frequencies: Statistics tick the boxes for the measures you 

want SPSS to show. Click on Continue.  

7. To order a graph, click on Charts. In the new window called Frequencies: 

Charts tick the box for the graph you want SPSS to show. Also make sure 

to tick the box Percentages. Click on Continue.  

8. Click on OK. 

 

 

 

 

 

 

 



 

47 

 

Frequency table: Syntax 

 

  

 

FREQUENCIES VARIABLES=VARNAME 

  /STATISTICS=MEASURES 

  /CHARTNAME SPECIFICATION 

  /ORDER=ANALYSIS.  

 

 
VARNAME    Insert the name of the variable you want to use. 

 

MEASURES   If you want to produce statistics, insert the types of statistic 

here.  

For example:  

MEAN  

or 

MEAN MEDIAN STDDEV 

 

CHARTNAME If you want to produce a graph, insert the name of the graph 

here.  

For example:  

BARCHART  

PIECHART  

HISTOGRAM 

 

SPECIFICATION For bar charts and pie charts, specify if you want to display 

frequencies or percentages on the y-axis (i.e. vertical axis). 

   For example: 

   FREQ 

   PERCENT 

   For histograms, specify if you want to add a normal curve: 

   NORMAL 
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Frequency table: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

FREQUENCIES VARIABLES=hometype 

  /STATISTICS=MODE MEDIAN 

  /ORDER=ANALYSIS.  

 

 

hometype  Building type (1=Single family; 2=Multiple family; 

3=Townhouse; 4=Mobile home) 
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Output/Step 1 

 

The table called Statistics gives a summary of the variable. SPSS automatically shows 

the number of valid values as well as the number of missing values. If you ordered 

any additional statistics, they will be displayed in this table as well.  

 

 

 

 

Output/Step 2 

 

The next table is the actual frequency table. Missing System provides information 

about the number of individuals with missing information. Frequency gives the 

number of individuals in each category of the variable. Percent shows the percentage 

of individuals in each category of the variable, including missing. Valid Percent gives 

the percentage of individuals in each category of the variable, excluding missing (this 

is the type of percentage we most often report). Cumulative Percent adds up the 

percentages from the first category to the second, from the second to the third, and so 

on. 
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4.3 Cross table 

 

Quick facts  

Number of variables Two (it is possible to split/panel the table by a third 

variable) 

Scale of variable(s) Categorical (nominal/ordinal) 

 

This function is used primarily for categorical variables (i.e. nominal/ordinal) but can 

be used for any type of variable; the main concern is that the table becomes too 

complex and difficult to interpret if there are many categories/values in the variables 

used. Moreover, it is possible to add a chi-square to the cross table (for more 

information about chi-square, see Chapter 8).  
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Cross table: Function 

 

 

 

1. Go to the Menu bar, choose Analyze\Descriptive Statistics\Crosstabs.  

2. A small window will open, where you see one big box and three small 

boxes. In the left box, all your variables are displayed.  

3. Here, you choose two variables: one to be the Row variable, and one to be 

the Column variable. It is your choice which variable is row and which is 

column, but it is recommended that you make that choice depending on 

how you want to interpret your crosstable. If you are unsure, try both 

ways to see which the better choice is.  

4. Move your variables to the Row and Column boxes by using the arrows.  

5. If you stop here and press OK, you will only have a crosstable that 

displays frequencies. In most cases, you also want to see percentages.  

6. To do this, click on Cells. Tick the boxes for Row and/or Column.  

7. Click on Continue. 

8. Click on OK to close the Crosstabs window in order to get the results in 

your Output window.  

 

 

 

 
 



 

52 

 

Cross table: Syntax 

 

  

 

CROSSTABS 

  /TABLES=VARNAME1 BY VARNAME2 

  /FORMAT=AVALUE TABLES 

  /CELLS=COUNT PERCENTAGES  

  /COUNT ROUND CELL. 

 

 

VARNAME1    Insert the name of the first variable you want to use.  

This variable will be chosen for rows. 

 

VARNAME2    Insert the name of the second variable you want to use.  

This variable will be chosen for columns. 

 

PERCENTAGES   Specify which type/types of percentages you want to see. 

For example:  

ROW COLUMN TOTAL 
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Cross table: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

CROSSTABS 

  /TABLES=union BY gender 

  /FORMAT=AVALUE TABLES 

  /CELLS=COUNT ROW COLUMN  

  /COUNT ROUND CELL. 

 

 

gender    Gender (0=Man; 1=Woman) 

union    Union member (0=No; 1=Yes) 
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Output 

 

This is a cross table of the variables union and gender. Count allows us to count the 

number of times that a particular combination of the two variables occurs. The % 

within Union member shows the distribution of gender among those who are not a 

union member as well as the distribution of gender among those who are a union 

member (each row adds up to 100 %). The % within  Gender shows the distribution 

of union among men as well as the distribution of union among women (each column 

adds up to 100 %).   
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4.4 Bar chart 

 

Quick facts  

Number of variables Simple bar chart: one (it is possible to split/panel the 

chart by a second variable) 

Clustered bar chart: two (it is possible to split/panel the 

chart by a third variable) 

Scale of variable(s) Categorical (nominal/ordinal) 

 

The bar chart is useful primarily for categorical variables (i.e. nominal/ordinal) but 

can be used for any type of variable as long as there are not too many values for each 

variable. There are two useful types of bar chart: the simple bar chart and the clustered 

bar chart. The simple bar chart allows for an illustration of one variable, but it is 

possible to split it by a second variable. The clustered bar chart uses two variables and 

shows how the values of these two variables cluster together (here as well, it is 

possible to split the chart by another variable).  
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Bar chart: Function 

 

 

 

Simple bar chart 

 

1. Go to the Menu bar, choose Graphs\Legacy Dialogs\Bar.  

2. A small window will open, where you click on Define. 

3. A new window called Define Simple Bar: Summaries for Groups of 

Cases will open. 

4. Tick the option % of cases.   

5. In the left box, all your variables are displayed. Here, you select the 

variable you want SPSS to show a bar chart for. Click on the arrow next 

to Category Axis.  

6. Click on OK to close the Define Simple Bar: Summaries for Groups of 

Cases window in order to get the results in your Output window.  

 

Clustered bar chart 

 

1. Go to the Menu bar, choose Graphs\Legacy Dialogs\Bar.  

2. A small window will open, where you choose the option Clustered. 

3. Click on Define. 

4. A new window called Define Clustered Bar: Summaries for Groups of 

Cases will open. 

5. Tick the option % of cases.   

6. In the left box, all your variables are displayed. Here, you select the 

variable you want SPSS to show a bar chart for. Click on the arrow next 

to Category Axis.  

7. In the left box, you select the variable you want the previous variable to 

be clustered by. Click on the arrow next to Define Clusters by. 

8. Click on OK to close the Define Simple Bar: Summaries for Groups of 

Cases window in order to get the results in your Output window.  
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Bar chart: Syntax 

 

  

 

Simple bar chart 

 

GRAPH 

  /BAR(SIMPLE)=PCT BY VARNAME. 

 

Clustered bar chart 

 

GRAPH 

  /BAR(GROUPED)=COUNT BY VARNAME1 BY VARNAME2. 

 

 
VARNAME    Insert the name of the variable you want to use. 

 
VARNAME1  Insert the name of the variable you want to use as the main 

variable. 

 

VARNAME2 Insert the name of the variable you want to use as your 

grouping/clustering variable 
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Bar chart: Example (simple bar chart) 

 

 

 

(Data: SPSS_data1.sav) 

 

GRAPH 

  /BAR(SIMPLE)=PCT BY jobsat. 

 

 

jobsat  Job satisfaction (1=Highly dissatisfied; 2=Somehwat dissatisfied; 

3=Neutral; 4=Somewhat satisfied; 5=Highly satisfied) 
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Output 

 

This is a bar chart of the variable jobsat. The x-axis (horizontal axis) represents the 

values of the variable. The y-axis (vertical axis) represents the proportion of 

individuals.   

 

 

 
 

 

Note: To include the exact percentage for each bar, double-click on the graph in the 

Output window. This opens a new window called Chart Editor. Click on Elements in 

this window’s Menu bar and then click on Show Data Labels. A new window called 

Properties is opened; click on Close. Finally, close the Chart Editor to save the 

changes to the Output window.   
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Bar chart: Example (clustered bar chart) 

 

 

 

(Data: SPSS_data1.sav) 

 

GRAPH 

  /BAR(GROUPED)=PCT BY jobsat BY gender. 

 

 

jobsat  Job satisfaction (1=Highly dissatisfied; 2=Somehwat dissatisfied; 

3=Neutral; 4=Somewhat satisfied; 5=Highly satisfied) 

gender   Gender (0=Man; 1=Woman) 
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Output 

 

This is a bar chart of the variable jobsat, grouped by the variable gender. The x-axis 

(horizontal axis) represents the values of the first variable (jobsat). The bars have 

different colours depending on the value of the grouping variable (gender). The y-axis 

(vertical axis) represents the proportion of individuals.   

 

 

 
 

Note: To include the exact percentage for each bar, double-click on the graph in the 

Output window. This opens a new window called Chart Editor. Click on Elements in 

this window’s Menu bar and then click on Show Data Labels. A new window called 

Properties is opened; click on Close. Finally, close the Chart Editor to save the 

changes to the Output window.  
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4.5 Pie chart 

 

Quick facts  

Number of variables One (it is possible to split/panel the chart by a second 

variable) 

Scale of variable(s) Categorical (nominal/ordinal) 

 

This function is used only for categorical variables (i.e. nominal/ordinal) with 

relatively few categories – otherwise the pie chart will get too complex.  

 



 

63 

 

Pie chart: Function 

 

 

 
1. Go to the Menu bar, choose Graphs\Legacy Dialogs\Pie.  

2. A small window will open, where you click on Define.  

3. A new window called Define Pie: Summaries for Groups of Cases will 

open. 

4. Tick the option % of cases.   

5. In the left box, all your variables are displayed. Here, you select the 

variable you want SPSS to show a pie chart for. Click on the arrow next 

to Define slices by.  

6. Click on OK to close the Define Pie: Summaries for Groups of Cases 

window in order to get the results in your Output window.  
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Pie chart: Syntax 

 

  

 
GRAPH 

  /PIE=PCT BY VARNAME. 

 
 

VARNAME   Insert the name of the variable you want to use. 
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Pie chart: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

GRAPH 

  /PIE=PCT BY hometype. 

 

 

Hometype  Building type (1=Single family; 2=Multiple family;  

3=Townhouse; 4=Mobile home) 
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Output 

 

This is a pie chart of the variable hometype. It is a circular diagram, divided into slices, 

where each slice represents the proportion of a specific value of the variable.  

 

 

 
 

 

Note: To include the exact percentage for each slice, double-click on the graph in the 

Output window. This opens a new window called Chart Editor. Click on Elements in 

this window’s Menu bar and then click on Show Data Labels. A new window called 

Properties is opened; click on Close. Finally, close the Chart Editor to save the 

changes to the Output window. 
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4.6 Histogram 

 

Quick facts  

Number of variables One (it is possible to split/panel the chart by a second 

variable) 

Scale of variable(s) Continuous (ratio/interval) 

 

This function is used to illustrate the distribution of continuous variables (i.e. 

ratio/interval). It is possible to include a normal curve in the chart in order to see how 

the data adheres to a normal distribution.  
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Histogram: Function 

 

 

 
1. Go to the Menu bar, choose Graphs\Legacy Dialogs\Histogram.  

2. A new window called Histogram will open. 

3. In the left box, all your variables are displayed. Here, you select the 

variable you want SPSS to show a histogram for. Click on the arrow next 

to Variable.  

4. Tick the option Display normal curve to include a normal curve fitted to 

the data. 

5. Click on OK to close the Histogram window in order to get the results in 

your Output window.  
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Histogram: Syntax 

 

  

 

GRAPH 

  /HISTOGRAM(NORMAL)=VARNAME. 

 

 

VARNAME    Insert the name of the variable you want to use. 
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Histogram: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

GRAPH 

  /HISTOGRAM(NORMAL)=ed. 

 

 

ed   Years of education (Min=6; Max=23) 
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Output 

 

This is a histogram of the variable ed. The x-axis (horizontal axis) represents the 

values of the variable. The y-axis (vertical axis) represents the number of individuals. 

The black line displays the normal curve. SPSS automatically gives you the mean, 

standard deviation and the total number of cases for the variable.   
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4.7 Scatterplot 

 

Quick facts  

Number of variables Two (it is possible to split/panel the chart by a third 

variable) 

Scale of variable(s) Continuous (ratio/interval) 

 

This function is used to illustrate how two continuous variables co-vary – or 

“correlate” – in their pattern of values (see Chapter 9 for more detailed information 

about correlation). If increasing values of one variable correspond to increasing values 

of another variable, it is called a positive correlation. If increasing values of one 

variable correspond to decreasing values of another variable, we have a negative 

correlation. In the graph below, different types of correlation are presented. The letter 

“x” stands for x-axis (horizontal axis) and the letter “y” stands for y-axis (vertical 

axis).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y y y 

x x x 

Positive correlation Negative correlation No correlation 
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Scatterplot: Function 

 

 

 

1. Go to the Menu bar, choose Graphs\Legacy Dialogs\Scatter/Dot.  

2. A small window will open, where you click on Define.  

3. A new window called Simple Scatterplot will open. 

4. In the left box, all your variables are displayed. Move the variables you 

want to use to the Y Axis and X Axis by highlighting them and clicking 

on the arrow next to the axis you want them on. 

5. Click on OK to close the Simple Scatterplot window in order to get the 

results in your Output window. 
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Scatterplot: Syntax 

 

  

 
GRAPH 

  /SCATTERPLOT(BIVAR)=XVAR WITH YVAR 

  /MISSING=LISTWISE. 

 

 

XVAR     Insert the name of the first variable you want to use.  

This variable will be chosen for the x-axis. 

 

YVAR     Insert the name of the second variable you want to use.  

This variable will be chosen for the y-axis. 
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Scatterplot: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

GRAPH 

  /SCATTERPLOT(BIVAR)=age WITH pets 

  /MISSING=LISTWISE. 

 

 

age    Age in years (Min=18; Max=79) 

pets    Number of pets owned (Min=0; Max=21) 
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Output 

 

This is a scatterplot of the variables age and pets. The x-axis (horizontal axis) 

represents the values of the variable age. The y-axis (vertical axis) represents the 

values of the variable pets. Each dot represents one individual. As can be seen from 

this scatterplot, these two variables do not co-vary. If they would have co-varied, we 

would typically have seen an oval shape (tilted to the left or to the right), where low 

values for age would correspond to either low or high values for pets (and vice versa).   

 

 

 
 

 

Note: To include a reference line, double-click on the graph in the Output window. 

This opens a new window called Chart Editor. Click on Elements in this window’s 

Menu bar and then click on Fit Line at Total. A new window called Properties is 

opened; click on Close. Finally, close the Chart Editor to save the changes to the 

Output window.  

 

 



 

77 

 

4.8 Edit graphs 

 

As already touched upon, it is possible to modify various elements of the graphs you 

produce in SPSS. In the Output window, just double-click on a graph of choice. This 

will open the Chart Editor. For example, the Chart Editor allows you to change the 

size and colours of the graph, as well as to add data labels (e.g. percentages) and 

reference lines. Try it out!  
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5. OTHER USEFUL 

FEATURES IN SPSS 

This part of the guide will describe other features in SPSS that you may need to use 

when you work with your data material.  

 

 

5.1 Recode 

5.2 Compute 

5.3 Select cases 

5.4 If 

5.5 Weight cases 
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5.1 Recode 

 

The recoding command is useful in a lot of different situations. For example: if you 

have a variable that is continuous and you want to create categories, if you have a 

categorical variable where you want to combine categories, if you want to change a 

binary variable (i.e. a variable with only two values, such as gender) to have the 

opposite coding, or if you want to change any value(s) into missing.  
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Recode: Function 

 

 

 

Imagine that we have a continuous variable with information about age that we 

want to change into age groups.  

 

1. Go to the Menu bar, choose Transform\Recode into different 

variables.  

2. A new window called Recode into Different Variables will open. 

3. In the left box, all your variables are displayed. You choose the 

variable that you want to recode and the use the arrow to move it to 

the right box.  

4. Below Output variable, you specify the Name of the new variable.  

If the old variable was called age, the new could be named agecat.  

5. Also specify the Label, for example: “Age category”.  

6. Click on Change.  

7. Click on Old and New Values, whereby a new window called Recode 

into Different Variables: Old and New Values will open. 

8. Here, the basic principle is very easy: you let SPSS know what the old 

values are, and then what you want the new values to be.  

9. In the example of age (that ranges from 18 to 79), we choose the 

following age groups: 18-24; 25-34; 35-49; 50-64; >65 (65 or older).    

Below Range you write “18” through “24” and next to Value (below 

New Value) you write “1”. Then click on Add.  

Below Range you write “25” through “34” and next to Value (below 

New Value) you write “2”. Then click on Add.  

Below Range you write “35” through “49” and next to Value (below 

New Value) you write “3”. Then click on Add.  

Below Range you write “50” through “64” and next to Value (below 

New Value) you write “4”. Then click on Add.  

Below Range you write “65” through “79” and next to Value (below 

New Value) you write “5”. Then click on Add.  

10. Click on Continue and then OK. 

11. Now you will have a new categorical variable based on your 

continuous variable. 
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Recode: Syntax 

 

  

 

RECODE VARNAME (OLD AND NEW VALUES) INTO VARNAME_NEW. 

EXECUTE. 

 

 

VARNAME     Insert the name of the old variable.  

 

VARNAME_NEW   Insert the name you want for the new variable. 

 

(OLD AND NEW VALUES)  Specify how you want to transform the values. 

    Some examples: 

    (1 thru 3=1) (4 thru 6=2) (7=3) 

    or 

    (LOWEST thru 10=0) (11 thru HIGHEST=1) 

    or 

    (0=1) (1=2) (2=3) (3=4) (ELSE=SYSMIS) 

    or 

    (99=SYSMIS) (ELSE=COPY) 
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Recode: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

RECODE age (18 thru 24=1) (25 thru 34=2) (35 thru 49=3) (50 thru 64=4) (65 

thru 79=5) INTO agecat. 

EXECUTE. 

 

 

age   Age in years (Min=18; Max=79) 



 

83 

 

5.2 Compute 

 

Compute is another very useful command that works just like an ordinary calculator. 

For example, you can use it when you want to add, subtract, multiply or divide the 

values of one or more variables.  
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Compute: Function 

 

 

 

Imagine that we have one variable indicating how many saltwater fish people own 

(pets_saltfish) and one variable that indicates how many freshwater fish people own 

(pets_freshfish). We want to create a variable indicating how many fish people own 

in total (pets_fish), i.e. the sum of these two fish variables.  

  

1. Go to the Menu bar, choose Transform\Compute Variable.  

2. A new window called Compute Variable will open.  

3. In the left box (below Target Variable), you chose the name of the new 

variable, for example pets_fish.  

4. In the right box (below Numeric Expression), you write your formula. In this 

case, you would write “pets_saltfish+pets_freshfish”. 

5. Click on OK. 
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Compute: Syntax 

 

  

 

COMPUTE VARNAME_NEW=EXPRESSION. 

EXECUTE. 

 

 

VARNAME_NEW   Insert the name you want for the new variable. 

 

EXPRESSION   State how the new variable should be created. 

    Some examples: 

    (income_year1+income_year2+income_year3)/3 

    or 

    2005-age 

    or 

    height_cm*0,01 
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Compute: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

COMPUTE pets_fish=pets_saltfish+pets_freshfish.  

EXECUTE. 

 

 

pets_saltfish      Number of saltwater fish owned (Min=0; Max=8) 

pets_freshfish       Number of freshwater fish owned (Min=0) (Max=16) 
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5.3 Select cases 

 

Sometimes you may want to select only a specific part of the data set. For example, 

you may want to get descriptive statistics for men and women separately, or for a 

certain age range, or for only non-smokers. In that case, we may use a command called 

Select Cases. 
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Select cases: Function 

 

 

 

As an example, we may take the variable gender. Let us pretend we want to limit 

our descriptive statistics only to women.  

 

1. Go to the Menu bar, choose Data\Select Cases.  

2. A new window called Select Cases will open. 

3. Tick the box called If condition is satisfied.  

4. Click on the button called If. 

5. A new window called Select Cases: If will open. 

6. In the left box, all your variables are displayed. You choose the variable 

that you want to select cases for and the use the arrow to move it to the right 

box.  

7. In this specific example, we choose the variable gender (for which we want 

to select only women). In the right box, we thus write “gender=1” (since 

women has the value 1 here).  

8. Click on Continue and then OK. Now, only women are selected (and men 

are temporarily filtered out from the data set). 

9. If you want to “re-select” all cases, you carry out the following steps: 

10. Go to the Menu bar, choose Data\Select Cases.  

11. A new window called Select Cases will open. 

12. Tick the box called All cases.  

13. Click on OK. 

 

When you select cases, a new “filter” variable will be created in your data set. If 

you delete it, the selection will disappear. You can double-check that the selection 

works by opening up the Data view and see that the case numbers for cases you 

“un-selected” are crossed over. 

 

The selection will be applied to everything you do from the point you select cases 

and onwards, until you remove the selection. In other words, all tables and graphs 

will be based only on the selected individuals until you remove (or change) the 

selection.  
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Select cases: Syntax 

 

  

 

Apply selection 

 

USE ALL. 

COMPUTE FILTERNAME=(VARNAME=SPECIFICATION). 

FILTER BY FILTERNAME. 

EXECUTE. 

 

Remove selection 

 

FILTER OFF. 

USE ALL. 

EXECUTE. 

 

 

VARNAME    Insert the name of the variable you want to filter. 

 

SPECIFICATION Specify which value/values of this variable you 

want to keep. 

    Some examples: 

    (good_health=1) 

    or 

    (age>17) 

    or 

    (gender=1 & smoking=0) 

 

FILTERNAME Specify what you want to call the new variable that 

indicates which values to keep. 
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Select cases: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

Apply selection 

 

USE ALL.  

COMPUTE onlywomen=(gender=1).  

FILTER BY onlywomen.  

EXECUTE. 

 

Remove selection 

 

FILTER OFF. 

USE ALL. 

EXECUTE. 

 

 

gender   Gender (0=Man; 1=Woman) 
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5.4 If 

 

The If command is very similar to the Recode command. Just like Recode, If can be 

used to create new variables – but unlike Recode, you can also use If to condition your 

data. Put differently, it means you can construct a new variable (or change an existing 

one) given certain properties of one or more other variables.  
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Example 

Suppose we ask ten individuals a couple of questions about their smoking 

behaviour. The first question is: “Do you smoke?” (smoke) and the possible 

responses are: 0=No or 1=Yes. The second question is: “How many packs of 

cigarettes do you usually smoke per week?” (number_packs) and the response 

options are: 1=Less than one pack; 2=1 pack; 3=2 packs; 4=3-4 packs; 5=5-7 packs; 

6=8 or more packs. This is what our data looks like: 

 

 smoke number_packs 

1 0 1 

2 1 5 

3 0 . 

4 1 7 

5 0 . 

6 0 . 

7 0 1 

8 1 2 

9 0 . 

10 0 . 

 

The problem we have is that some of the individuals, who answered that they did 

not smoke in the first question, also gave an answer to the second question 

(individuals 1 and 7). We want to change their value in number_packs to missing 

(missing is illustrated by a “dot”). That is when we use the If command. By just 

writing the following in our syntax, we fix this problem: 

 

IF (smoke=0) number_packs=$SYSMIS. 

EXECUTE. 

 

 smoke number_packs 

1 0 . 

2 1 5 

3 0 . 

4 1 7 

5 0 . 

6 0 . 

7 0 . 

8 1 2 

9 0 . 

10 0 . 
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If: Syntax 

 

  

 

IF (CONDITION) OUTCOME. 

EXECUTE. 

 

 

(CONDITION)   Specify how you want to condition your data. 

    Some examples: 

    (education=3) 

    or 

    (gender=0 & smoke=1) 

    or 

    (age>17 & age<66) 

    or  

    SYSMIS(gender) 

 

OUTCOME   Specify how you want result to turn out. 

    Some examples: 

    health=$SYSMIS 

    or 

    working_age=1 

    or 

    (gender=1 & smoking=0) 
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If: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

We have two variables. The first variable (marital) contains information about 

marital status and the second variable (spoused) contains information about how 

many years of schooling the spouse has. Not all individuals have information for 

the variable spoused – it is primarily missing if the individual does not have a 

spouse (i.e. unmarried), but in some cases the individual is married but did not 

provide any information about the spouse’s education. So, we want to separate 

these two types of missing by recoding the missing information in spoused to the 

value -1 upon the condition that marital has the value 0 (i.e. unmarried).   

 

IF (marital=0) spoused=-1. 

EXECUTE. 

 

 

marital    Marital status (0=Unmarried; 1=Married) 

spoused   Spouse’s years of education (Min=0; Max=24) 
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5.5 Weight cases 

 

Optimally, our study sample should be a miniature of the population we are interested 

in (see Section 2.1). This is seldom the case, due to missing data. Missing data may 

cause some groups in the study sample to be smaller (i.e. underrepresented) or bigger 

(i.e. overrepresented) than they actually are. If such problems occur, we cannot draw 

reliable conclusions from our data. However, we can try to correct for the lack of 

representativeness by using “weights”. This is a rather common strategy in surveys. 

If you use an existing survey material, there are usually already designed weight 

variables in the data set. The guide will not discuss exactly how weights are calculated, 

just why and how they are used in SPSS. 

 

 

Example 

Suppose we have a sample of 1,000 adults who have answered a questionnaire 

about their health. Now we want to collect health data from all children age 10-18 

living in these adult persons’ household. This gives us a sample of 2,500 children. 

However, children who live in the same household are likely to experience similar 

living conditions – they do not adequately represent the population of children age 

10-18 – and we want to adjust for that. Thus, we use a weight variable that takes 

into account this particular sampling of children.     

 

  

To get “un-weighted” cases, remember to de-activate the Weight cases function in 

SPSS. 
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Weight cases: Syntax 

 

  

 

Activate the weight 

 

WEIGHT BY VARNAME. 

 

De-activate the weight 

 

WEIGHT OFF. 

 

 

VARNAME   Insert the name of the weight variable. 
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Weight cases: Example 

 

 

 

(Data: SPSS_data2.sav) 

 

The four-digit weight variable in the data material we use corrects the sample to 

reflect national distributions of key variables. We apply the weight before we run 

any analyses based on the data. 

 

WEIGHT BY weight_var. 
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6. STATISTICAL 

SIGNIFICANCE 

Outline 

6.1 Hypothesis testing 

6.2 P-values 

6.3 Confidence intervals 

6.4 Discussion 
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6.1 Hypothesis testing  

 

Quantitative research is commonly about examining relationships between variables 

(see Chapter 11 for a more detailed discussion about those issues). Assuming that all 

is done correctly, data analysis will give us information about the direction of the 

relationship (i.e. is the relationship negative or positive) and the effect size (i.e. how 

strong the relationship is). These are the two most important outcomes of data 

analysis, but it is not uncommon that research inquiry instead focuses on a third point: 

statistical significance. Statistical significance can be seen as an indicator of the 

reliability of the results – although that is important, it is not what exclusively should 

guide which findings we focus on and which we discard. A fourth issue that needs to 

be taken into account is whether the findings have any practical or clinical importance 

– in order words; do they matter? We therefore suggest the following priority list when 

it comes to how results from data analysis should be interpreted and valued: 

 

Priority list 

1. Direction Is the relationship positive or negative? 

2. Effect size Is the relationship strong or weak? 

3. Statistical significance Is the relationship reliable? 

4. Practical importance Is the relationship relevant? 

 

Hypotheses 

 

Let us return to the matter of statistical significance: what is it really? Well, for 

example, if we find that cats are smarter than dogs, we want to know whether this 

difference is “real”. Hypothesis testing is how we may answer that question. We start 

by converting the question into two hypotheses: 

 

Hypotheses 

Null hypothesis (H0) There is no difference 

Alternative hypothesis (H1) There is a difference 

 

There is no “law” saying that the null hypothesis is always “no difference” and the 

alternative hypothesis is always “difference”. However, for the null hypothesis, 

precedence is commonly given to the “simpler” (or more “conservative” or 

“normative”) hypothesis. Here, it is generally simpler to claim that there is no 

difference in intelligence between cats and dogs than to say that there is a difference.  
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Outcomes 

 

There are two possible outcomes of hypothesis testing: 

 

Outcomes of hypothesis testing 

Reject H0 in favour of 

H1 

Suggests that the alternative hypothesis may be true 

(but it does not prove it) 

Do not reject H0 Suggests that there is not sufficient evidence against 

H0 in favour of H1 (but it does not prove that the null 

hypothesis is true) 

 

Note that we are never able to decide from hypothesis testing that we should reject or 

accept H1. However, rejecting H0 may lead us to suggest that H1 might be accepted. 

 

Errors 

 

There are two types of error that may occur in hypothesis testing: a type I error occurs 

when the null hypothesis is rejected although it is true, whereas a type II error occurs 

when the null hypothesis is not rejected although it is false. In the example of cats and 

dogs, a type I error would thus occur if we concluded that there is a difference in the 

intelligence between cats and dogs although that is not true. A type II error, on the 

other hand, would occur if we concluded that there is no difference in intelligence 

when in fact there is.    

 

Type I and type II errors 

 Conclusion 

  Reject H0 in favour of H1 Do not reject H0 

“Truth” 
H0 Type 1 error Right decision 

H1 Right decision Type II error 

 

Type I errors are generally considered to be more serious that type II errors. Type II 

errors are often due to small sample sizes. 
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Statistical hypothesis testing 

 

Conducting a statistical hypothesis test is easy to do in statistical software such as 

SPSS. These tests give us a probability value (p-value) that can help us decide whether 

or not the null hypothesis should be rejected. See Section 6.2 for a further discussion 

about the p-value.  
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6.2 P-values 

 

The probability value – or p-value – helps us decide whether or not the null hypothesis 

should be rejected. There are some common misunderstandings about p-values: 

 

The p-value is not… 

… the probability that the null hypothesis is true 

… the probability that the alternative hypothesis is false 

… the probability of the occurrence of a type I error (falsely rejecting H0) 

... the probability that replicating the experiment would yield the same conclusion 

… the probability that the finding is a “fluke”  

… an indicator of the size of the effect or importance of the findings 

… determining the significance level 

 

Using the p-value to make this decision, it must first be decided what probability value 

we find acceptable. This is often referred to “the significance level”. If the p-value is 

below this level, it means that we can reject the null hypothesis in favour of the 

alternative hypothesis, and if the p-value is above this level, it means that we cannot 

reject the null hypothesis. The smaller the p-value, the more convincing is the 

rejection of the null hypothesis.  

 

Significance levels 

 

The significance level is set by the individual researcher – it that sense, it is quite 

arbitrary – but there are some levels that are widely used (asterisks are often used to 

illustrate these levels): 

 

Significance levels 

p<0.05 Statistically significant at the 5 % level * 

p<0.01 Statistically significant at the 1 % level ** 

p<0.001 Statistically significant at the 0.1 % level *** 

 

It should be noted that p<0.10 – statistical significance at the 10 % level – is also a 

commonly used significance level in some fields of research.   

 

Let us return to the example of differences in intelligence between cats and dogs. For 

instance, if we find a difference in intelligence between these types of animal, and the 

p-value is below 0.05, we may thus state that the null hypothesis (i.e. no difference) 
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is rejected at the 5 % significance level. The p-value does not, however, state whether 

the difference is small or big, or whether cats or dogs represent the smarter type of 

animal (in order to state such things, one would have to look at the direction and the 

effect size).  

 

It should be noted that the p-value is affected by the sample size, which means that a 

smaller sample size often translates to a larger p-value, For example, if you have a 

data material of 100 individuals, the effect size has to be quite large (e.g. large income 

differences income between men and women) in order to get small p-values. 

Conversely, larger sample size makes it easier to find small p-values. For example, if 

you analyse a data material containing the entire population of a country, even tiny 

differences are likely to have small p-values. In other words, the size of the sample 

influences the chances of rejecting the null hypothesis.   
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Practical importance 

 

As stated earlier in this section, statistical significance – determined by the p-value – 

is not the same as effect size or practical/clinical importance (i.e. if it “matters”). We 

can use couple of examples to illustrate the differences:  

 

 

Example 1  

A pharmaceutical company has developed a drug to cure obesity. During tests of 

this drug, it appears as migraine could be one of the side effects of taking this drug. 

The null hypothesis would here be that there are no differences in the risk of 

migraine between people who had taken the drug and those who have not. The 

alternative hypothesis would then be that there are differences. When we run the 

analysis on this data material, we see that those who have taken the drug have ten 

times the risk of migraine, but the p-value is above the 5 % level (i.e. p>0.05). Thus, 

we cannot reject the null hypothesis. The difference is however large and is likely 

to have significant impact on people’s lives. It could moreover be the case that a 

type II error has occurred here due to a small sample size.  

 

 

 

Example 2  

In the second example, researchers have gathered data on coffee consumption and 

happiness among 100,000 company employees. The null hypothesis would here be 

that there are no differences in happiness between people who drink coffee and 

those who do not. The alternative hypothesis would be that there are differences. 

The analysis suggests that there is a tiny difference in happiness between those who 

drink coffee and those who do not, to the advantage of the coffee drinkers. The p-

value is below 0.05 which suggests that the null hypothesis can be rejected at the 5 

% level. However, the difference is very small and the results may not be very 

useful.   
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6.3 Confidence intervals 

 

Confidence intervals (CI) are closely related to the concept of statistical hypothesis 

testing, but they are more informative than p-values since they do not only suggest 

whether we should reject H0 or not, they also provide the range of plausible values.  

 

The “unknown population parameter” 

 

Before we get into the discussion about confidence intervals, we need to address the 

concept of “unknown population parameter”. A parameter tells us something about a 

population (while a “statistic” tells us something about a sample). The population 

parameter is thus basically a measure of any given population. Examples of population 

parameters are: the mean height of Swedish men, the average intelligence score in 12-

year olds, or the mean number of children among highly educated people.  The 

parameter is a fixed value; it does not vary. We seldom have information about the 

entire population, generally only for a part of it (i.e. a sample). In that case, the 

population parameter is unknown. Simply put, a confidence interval is a range that 

includes the “unknown population parameter”. 

 

Limits and levels 

 

The interval has an upper and a lower bound (i.e. confidence limits). Similar to p-

values, confidence intervals have “confidence levels” that indicate how certain we can 

be that the interval includes the true population parameter. Confidence intervals are 

typically stated at the 5 % level. A 95 % confidence level would thus mean that if we 

replicated a certain analysis in 100 samples of the population, we would expect that 

95 % of the intervals would include the true population parameter. Thus, strictly 

speaking, it is not correct to say that “with 95 % probability, the true population 

parameter lies within this interval” (because the parameter either is or is not within 

the interval).  

 

Confidence and precision 

 

When discussing confidence intervals, it is important to be aware of the tension 

between precision and certainty: better precision means being less confident, whereas 

more confidence means less precision. As previously stated, confidence is reflected 

by the confidence level we choose; logically, a higher confidence level means more 

confidence. The higher the confidence level we choose, the wider the interval gets – 
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and the wider the interval is, the less the precision we get.  

 

Confidence versus precision 

Higher confidence level = wider confidence interval = less precision 

Lower confidence level = slimmer confidence interval = more precision 

 

However, it is important to know that the width of the confidence interval is also 

affected by the sample size: the larger the sample size, the slimmer the interval (which 

means better precision).  

 

Let us take an example to sum up what has been said about confidence intervals so 

far: We have gathered data on all sociology students at Stockholm University and find 

that their mean age is 26 years. Instead of highlighting this relatively non-informative 

fact, we can calculate the confidence interval (at the 5 % level). In this case, it is 22-

30. Therefore we could make the more informative statement that: “with 95 % 

confidence, we conclude that the mean age of sociology students is 22 to 30 years”.   

 

The most common application for confidence intervals as a way of significance testing 

is when we are interested in the difference between two samples. For example: the 

difference in the mean income between men and women, or the difference in the 

percentage of daily smokers among individuals with a lower level of education versus 

those with a higher level of education. In this case, we may look at the “overlap” 

between the confidence intervals estimated for each sample. Suppose that we have an 

upcoming election and just got the results from the latest poll. There are two parties 

in the race: the green party and the yellow party. The results from the poll show that 

the green party got 42 % of the votes and the confidence interval is 40-44 (at the 5 % 

level). The yellow party got 58 % of the votes and the confidence interval is 54-62 (at 

the 5 % level). What does this tell us? First of all, we can conclude that the yellow 

party has a greater share of votes. Looking at the two confidence intervals, we see that 

the intervals do not overlap. Why is that important? Well, remember that all values in 

a confidence interval are plausible. Hence, if the confidence intervals do not overlap, 

it means that the estimates (in this case: the share of votes) are indeed different given 

the chosen confidence level (in this case: at the 5 % level). However, it should be 

emphasized that while non-overlap always mirrors a significant difference, overlap is 

not always the same as a non-significant difference.   
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6.4 Discussion 

 

Now you are maybe wondering; should I use p-values or confidence intervals? Almost 

all disciplines would recommend using both because they capture several dimensions. 

In the following, the advantages and disadvantages of p-values and confidence 

intervals will be described and discussed.  

 

P-value is an important part of research, most likely the heart of it. The p-value is 

based on “yes-or no”-questions in which it shows how much evidence we have against 

the null hypothesis. P-values are much clearer than confidence intervals and it helps 

the researcher to make quick judgments about his research. Another advantage with 

the p-value is that it can give the difference from a previous specified statistical level. 

Unfortunately there are misconceptions about the p-value among researchers and 

many disciplines rely on them to draw conclusions rather than understanding the 

background. One of the common mistakes among researchers is that they do not 

further analyze their data in order to ensure that the p-value is not affected by other 

factors. Moreover, p-values cannot alone permit any direct statements about the 

direction or size of difference. In order to make those decisions, one must always look 

at the confidence intervals.  

 

A confidence interval informs the researcher about the power of the study and whether 

the data is compatible, it also shows the likelihood of the null hypothesis being true 

and that in turn tells us how much confidence we have in our findings. The width of 

the confidence interval indicates the precision of the point estimates, in which a small 

interval indicates a more precise estimate, while a wide interval indicates a less precise 

estimate. The precision is related to the sample size and power in which it tells us that 

the larger sample size we have, the greater, the more precise estimates we have. The 

intervals are useful when having small sample sizes. Normally, small studies fail to 

find statistically significant treatments, when including point estimates with wide 

intervals that include the null value may be consistent and significant. The intervals 

provide the researcher an understanding of the sample size. This can also be a 

disadvantage when having large data because it produces statistically significant 

results even if the difference between the groups is small. Another advantage with the 

confidence interval is that it can provide means of analysis for studies that seek to 

describe and explain, rather than make decisions about treatments effects. A 

disadvantage with the confidence interval is that it captures several elements at the 

time, in which it may not give precise information like the p-values.  

 

As mentioned, a majority of disciplines recommend including both p-values and 
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confidence intervals because they capture information in different dimensions. 

Neither p-values nor confidence intervals can prevent biases or other problems but the 

combination of them provides a more flexible approach and highlights new 

perspectives on the data. Confidence intervals permit us to draw several conclusions 

at the same time and they are more informative about sample sizes and point estimates. 

They are also useful in studies when we have small sample sizes. But they are not as 

precise as p-values when it comes to accepting and rejecting the null hypothesis. Thus, 

when we combine them together we can be more certain.  

 

The figure below shows the advantages and disadvantages when interpreting and 

drawing conclusions with the help of p-values and confidence intervals.  

 

P-values versus confidence intervals 

 P-values Confidence intervals 

Accept/reject 
  

Degree of support 
  

Estimate and uncertainty 
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7. COMPARE MEANS 

Outline 

7.1 T-test: independent samples 

7.2 T-test: paired samples 

7.3 One-way ANOVA 
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7.1 T-test: independent samples 

 

Quick facts  

Number of variables One independent (x) 

One dependent (y) 

Scale of variable(s) Independent: categorical with two values (binary) 

Dependent: continuous (ratio/interval) 

 

The independent samples t-test is a method for comparing the mean of one variable 

between two (unrelated) groups. For example, you may want to see if the income 

salary of teachers differs between men and women, or if the score of a cognitive test 

differs between children who have parents with low versus high education. 

 

 

 

 
Mean income salary among men Mean income salary among women 
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Assumptions 

 

First, you have to check your data to see that the assumptions behind the independent 

samples t-test hold. If your data “passes” these assumptions, you will have a valid 

result. However, “real world” data is often a bit complicated, and it is not uncommon 

that at least one of the assumptions is violated. While you most commonly will be 

able to conduct the t-test anyway, it is important to be aware of the possible problems.  

 

Checklist  

Continuous 

dependent 

variable 

Your dependent variable should be continuous (i.e. 

interval/ratio). For example: Income, height, weight, 

number of years of schooling, and so on. Although they are 

not really continuous, it is still very common to use ratings 

as continuous variables, such as: “How satisfied with your 

income are you?” (on a scale 1-10) or “To what extent do 

you agree with the previous statement?” (on a scale 1-5). 

Two unrelated 

categories in the 

independent 

variable 

Your independent variable should be categorical and consist 

of only two groups. Unrelated means that the two groups 

should be mutually excluded: no individual can be in both 

groups. For example: men vs. women, employed vs. 

unemployed, low-income earner vs. high-income earner, 

and so on. 

No outliers An outlier is an extreme (low or high) value. For example, 

if most individuals have a test score between 40 and 60, but 

one individual has a score of 96 or another individual has a 

score of 1, this will distort the test. 
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T-test: independent samples: Function 

 

 

 

1. Go to the Menu bar, choose Analyze\Compare Means\Independent-

Samples T Test.  

2. In the left box, all your variables are displayed. You choose the 

variable you want to have as your dependent variable and transfer it 

to the box called Test Variable(s).  

3. Then you choose the variable you want as your independent variable 

and transfer it to the box called Grouping Variable. 

4. Click on Define Groups… 

5. Specify which values the two categories in the independent variable 

have.  

6. Click on Continue. 

7. Click on OK.  
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T-test: independent samples: Syntax 

 

  

 

T-TEST GROUPS=INDEPVAR(G1 G2) 

  /MISSING=ANALYSIS 

  /VARIABLES=DEPVAR 

  /CRITERIA=CI(.95). 

 

 

INDEPVAR   Name of the categorical independent variable  

 

(G1 G2) Specify which values the two categories the 

independent variable have. 

  For example: 

  (0 1) 

  or 

    (1 2) 

 

DEPVAR   Name of the continuous dependent variable 
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T-test: independent samples: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

T-TEST GROUPS=retire(0 1) 

  /MISSING=ANALYSIS 

  /VARIABLES=hourstv 

  /CRITERIA=CI(.95). 

 

 

retire   Retired (0=No; 1=Yes) 

hourstv    Hours spent watching TV last week (Min=0; Max=36) 
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Output/Step 1 

 

The table called Group Statistics sums the statistics for the variables in the t-test. Here, 

it can be interesting to look at each groups’ mean value. As can be seen, those who 

are not retired have a slightly higher mean value for hours spent watching TV: 19.89 

compared to 18.21 for those who are retired. 
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Output/Step 2 

 

The difference between the not-retired group’s and retired group’s mean value is 

tested in the next table (Independent Samples Test).  

 

The first value of interest is the Levene’s Test for Equality of Variances. This test 

indicates which row of the table you are supposed to focus on. Look at the column 

called Sig. If Levene’s test is significant at the 5 % level (p<0.05) then you focus on 

the row for Equal variances not assumed. If the test is not significant (p>0.05), you 

focus on the row for Equal variances assumed.  

 

Once you have established which row you are supposed to look at, the second value 

of interest is the column called Sig. (2-tailed). A significant p-value here means that 

the difference between the groups is statistically significant. In this case, the p-value 

is 0.000 which means that the difference we found in the table above – which showed 

that those who are not retired watch more TV than those who are retired – is 

statistically significant (at the 0.1 % level). However, the difference is rather small.   
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7.2 T-test: paired samples 

 

Quick facts  

Number of variables Two (reflecting repeated measurement points) 

Scale of variable(s) Continuous (ratio/interval) 

 

A dependent or “paired” samples t-test is used to see the difference or change between 

two measurement points. For example, you could apply this test to see if the staff’s 

job satisfaction has improved after their boss has taken a course in “socio-emotional 

skills” compared to before, or if the rate of cigarette smoking in certain schools has 

declined since the introduction of a new intervention programme.  

 

For the independent samples t-test, you were supposed to have two groups for which 

you compared the mean. For the paired samples t-test, you instead have two 

measurements of the same variable, and you look at whether there is a change from 

one measurement point to the other.  

 

 

 

 

 
Happiness score before summer 

vacation 

Happiness score after summer vacation 
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Assumptions 

 

First, you have to check your data to see that the assumptions behind the paired 

samples t-test hold. If your data “passes” these assumptions, you will have a valid 

result. However, “real world” data is often a bit complicated, and it is not uncommon 

that at least one of the assumptions is violated. While you most common will be able 

to conduct the t-test anyway, it is important to be aware of the possible problems. 

 

Checklist 

Continuous 

variables 

Your two variables should be continuous (i.e. interval/ratio). For 

example: Income, height, weight, number of years of schooling, 

and so on. Although they are not really continuous, it is still very 

common to use ratings as continuous variables, such as: “How 

satisfied with your income are you?” (on a scale 1-10) or “To what 

extent do you agree with the previous statement?” (on a scale 1-

5). 

Two measurement 

points 

Your two variables should reflect one single phenomenon, but this 

phenomenon is measured at two different time points for each 

individual. 

Normal distribution Both variables need to be approximately normally distributed. Use 

a histogram to check (see Section 4.6). 

No outliers in the 

comparison between 

the two 

measurement points  

For example, if one individual has an extremely low value at the 

first measurement point and an extremely high value at the second 

measurement point (or vice versa), this will distort the test. Use a 

scatterplot to check (see Section 4.7). 
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T-test: paired samples: Function 

 

 

 

1. Go to the Menu bar, choose Analyze\Compare Means\Paired Samples 

T Test. 

2. In the left box, all your variables are displayed. You choose the 

variable you want to have as your dependent variable and transfer it 

to the box called Paired variables.  

3. Then you choose the variable you want as your independent variable 

and transfer it to the box called Paired variable.  

4. Click on OK. 
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T-test: paired samples: Syntax 

 

  

 

T-TEST PAIRS=MEASURE1 WITH MEASURE2 (PAIRED) 

  /CRITERIA=CI(.9500) 

  /MISSING=ANALYSIS. 

 

 

MEASURE1  Insert the name of the variable containing information 

about the first measurement point.  

 

MEASURE2  Insert the name of the variable containing information 

about the second measurement point. 
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T-test: paired samples: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

T-TEST PAIRS=unempl_03 WITH unempl_05 (PAIRED) 

  /CRITERIA=CI(.9500) 

  /MISSING=ANALYSIS. 

 

 

unempl_03  Unemployment days in 2003 (ranges from 0 to 365) 

unempl_05  Unemployment days in 2005 (ranges from 0 to 365) 
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Output/Step 1 

 

The table called Paired Samples Statistics shows the statistics for the variables. For 

example, it shows the mean value for each of the two measurement points. In the 

current example, we see that the mean number of unemployment days is lower in 2003 

(mean=8.12) than in 2005 (mean=11.31).  

 

 

 
 

 

Output/Step 2 

 

The table called Paired Samples Test shows the results from the actual t-test. The first 

column – Mean – shows that the mean difference between unemployment days in 

2003 and unemployment days in 2005 is -3.190 (this difference is actually just derived 

from taking 11.31 minus 8.12). The last column – Sig. (2-tailed) – shows the p-value 

for this difference. If the p-value is smaller than 0.05, the test suggests that there is a 

statistically significant difference (at the 5 % level). Thus, here we can conclude that 

there is a statistically significant increase in unemployment days from 2003 to 2005. 
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7.3 One-way ANOVA 

 

Quick facts  

Number of variables One independent (x) 

One dependent (y) 

Scale of variable(s) Independent: categorical (nominal/ordinal) 

Dependent: continuous (ratio/interval) 

 

The one-way ANOVA is very similar to the independent samples t-test. The 

difference is that the one-way ANOVA allows you to have more than two categories 

in your independent variable. For example, you can compare how many cups of coffee 

people drink per day depending on if they have a low-stress, medium-stress, or high-

stress job. Or you can see if the number of days of paternity leave differs between 

fathers in Sweden, Denmark, Norway and Finland. However, it is important to 

remember that the one-way ANOVA does not tell you exactly which groups are 

different from each other; it only tells you that at least two of the groups differ in terms 

of the outcome.  

 

 

 

 

 

 

 
Mean number of ice 

cones per week during 

May in Swedish children 

ages 5-10  

Mean number of ice 

cones per week during 

June in Swedish children 

ages 5-10 

Mean number of ice 

cones per week during 

July in Swedish children 

ages 5-10 
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Assumptions 

 

First, you have to check your data to see that the assumptions behind the one-way 

ANOVA hold. If your data “passes” these assumptions, you will have a valid result. 

However, “real world” data is often a bit complicated, and it is not uncommon that at 

least one of the assumptions is violated. While you most common will be able to 

conduct the test anyway, it is important to be aware of the possible problems.  

 

Checklist  

Continuous 

dependent 

variable 

Your dependent variable should be continuous (i.e. 

interval/ratio). For example: Income, height, weight, number 

of years of schooling, and so on. Although they are not really 

continuous, it is still very common to use ratings as 

continuous variables, such as: “How satisfied with your 

income are you?” (on a scale 1-10) or “To what extent do 

you agree with the previous statement?” (on a scale 1-5). 

Two or more 

unrelated 

categories in the 

independent 

variable 

Your independent variable should be categorical (i.e. 

nominal or ordinal) and consist of two or more groups. 

Unrelated means that the groups should be mutually 

excluded: no individual can be in more than one of the 

groups. For example: low vs. medium vs. high educational 

level; liberal vs. conservative vs. socialist political views; or 

poor vs. fair, vs. good vs. excellent health; and so on. 

No outliers An outlier is an extreme (low or high) value. For example, if 

most individuals have a test score between 40 and 60, but 

one individual has a score of 96 or another individual has a 

score of 1, this will distort the test. 
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One-way ANOVA: Function 

 

 

 

1. Go to the Menu bar, choose Analyze\Compare Means\One-way 

ANOVA.  

2. In the left box, all your variables are displayed. You choose the 

variable you want to have as your dependent variable and transfer it 

to the box called Dependent list. 

3. You also choose the variable you want as your independent variable 

and transfer it to the box called Factor.  

4. Go to the box Option. Tick the boxes called Descriptive, 

Homogeneity of variance test, Brown-Forsythe, Welch and Means 

Plot.  

5. Click on Continue and then on OK.  
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One-way ANOVA: Syntax 

 

  

 

ONEWAY DEPVAR BY INDEPVAR 

  /STATISTICS OPTIONS  

  /MISSING ANALYSIS. 

 

 

DEPVAR   Name of the continuous dependent variable 

It is possible to list more than one dependent 

variable 

 

INDEPVAR   Name of the categorical independent variable  

 

OPTIONS   List the options you want to be included 

    For example:  

    DESCRIPTIVES 
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One-way ANOVA: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

ONEWAY income BY bfast 

  /STATISTICS DESCRIPTIVES HOMOGENEITY WELCH 

  /MISSING ANALYSIS. 

 

 

income  Household income in thousands of dollars (Min=9; Max=1073) 

bfast   Preferred breakfast (1=Energy bar; 2=Oatmeal; 3=Cereal) 
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Output/Step 1 

 

The table called Paired Samples Statistics shows the descriptive statistics for the 

variables, including the mean value of the dependent variable (income) for each 

category of the independent variable (bfast).  

 

 

 

 

 

Output/Step 2 

 

The table called Test of Homogeneity of Variances shows the results from a Levene’s 

test for testing the assumption of equal variances. Put differently, this test is concerned 

with whether or not the variances of the categories are different from one another. The 

column called Sig. shows the p-value for this test. If the p-value is larger than 0.05, 

we can use the results from the standard ANOVA test. However, if the p-value is 

smaller than 0.05, it means that the assumption of homogeneity of variance is violated 

and we cannot trust the standard ANOVA results. Instead, we focus on the results 

from the Welch ANOVA. Note, however, than both these tests produce so-called F 

statistics.  
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Output/Step 3 

 

If the p-value for the Levene’s test had been larger than 0.05 in this example, we 

would have focused on the table called ANOVA. The column called Sig. shows 

whether or not we have a statistically significant difference in our dependent variable 

(income) between the categories of the independent variable (bfast). A p-value that is 

smaller than 0.05 would suggest that there is indeed a statistically significant 

difference (at the 5 % level).  

 

 
 

 

Output/Step 4 

 

Since the p-value for the Levene’s test in this example was smaller than 0.05, we 

instead focus on the next table: Robust Tests of Equality of Means. The same principle 

as for the standard ANOVA test applies here: if the p-value (in the column called Sig.) 

is smaller than 0.05, it means that we have a statistically significant difference (at the 

5 % level) in our dependent variable (income) between the categories of the 

independent variable (bfast). 
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8. CHI SQUARE 

Outline 

8.1 Chi-square 
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8.1 Chi-square 

 

Quick facts  

Number of variables Two 

Scale of variable(s) Categorical (nominal/ordinal) 

 

There are two different forms of the chi-square test: a) The multidimensional chi-

square test, and b) The goodness of fit chi-square test. It is the first form that will be 

covered in this part of the guide. The second form is discussed in Section 14.3.  

 

The multidimensional chi-square test assesses whether there is a relationship between 

two categorical variables. For example, you want to see if young women smoke more 

than young men. The variable gender has two categories (men and women) and, in 

this particular case, the variable smoking consists of the categories: no smoking, 

occasional smoking and frequent smoking. The multidimensional chi-square test can 

be thought of as a simple cross table where the distribution of these two variables is 

displayed: 

 

 No smoking Occasional smoking Frequent smoking 

Men (age 15-24) 85 % 10 % 5 % 

Women  (age 15-24) 70 % 20 % 10 % 

 

Assumptions 

 

First, you have to check your data to see that the assumptions behind the chi-square 

test hold. If your data “passes” these assumptions, you will have a valid result. 

  

Checklist 

Two or more 

unrelated 

categories in both 

variables 

Both variables should be categorical (i.e. nominal or ordinal) 

and consist of two or more groups. Unrelated means that the 

groups should be mutually excluded: no individual can be in 

more than one of the groups. For example: low vs. medium 

vs. high educational level; liberal vs. conservative vs. 

socialist political views; or poor vs. fair, vs. good vs. 

excellent health; and so on. 
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Chi-square: Function 

 

 

 

1. Go to the Menu bar, choose Analyze\Descriptive Statistics\Crosstabs.  

2. A small window will open, where you see one big box and three small 

boxes. In the left box, all your variables are displayed.  

3. Here, you choose two variables: one to be the Row variable, and one 

to be the Column variable.  

4. Move your variables to the Row and Column boxes by using the 

arrows.  

5. Click on Statistics. 

6. Tick the box for Chi-square.  

7. Click on Continue. 

8. Tick the box called Suppress tables located below the box containing 

all variables. 

9. Click on OK. 
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Chi-square: Syntax 

 

  

 

CROSSTABS 

  /TABLES= VARNAME1 BY VARNAME2 

  /FORMAT=NOTABLES 

  /STATISTICS=TYPE  

  /COUNT ROUND CELL. 

 

 

VARNAME1     Insert the name of the first variable you want to use.  

This variable will be chosen for rows. 

 

VARNAME2  Insert the name of the second variable you want to 

use. This variable will be chosen for columns. 

 

/FORMAT=NOTABLES  Insert this if you do not want SPSS to produce a 

cross table (in that case you will only get the results 

from the chi-square test. 

 

 TYPE     Choose the type of statistics you want to produce.  

    For example: 

    CHISQ 
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Chi-square: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

CROSSTABS 

  /TABLES=bfast BY gender 

  /FORMAT=NOTABLES 

  /STATISTICS=CHISQ  

  /COUNT ROUND CELL. 

 

 

bfast    Preferred breakfast (1=Energy bar; 2=Oatmeal; 3=Cereal) 

gender    Gender (0=Man; 1=Woman) 
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Output 

 

The table called Chi-Square Tests shows the results from the chi-square test for the 

variables bfast and gender. Here, we look at the row called Pearson Chi-Square and 

the column Asymp. Sig. (2-sided) to see the p-value for the test. A p-value smaller 

than 0.05 indicates that there is a statistically significant association (at the 5 % level) 

between the two variables in the test, whereas a p-value larger than 0.05 suggests that 

there is not a statistically significant association. Since the p-value in this example is 

0.891, we can conclude that bfast and gender are not associated with one another at a 

statistically significant level.  
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9. CORRELATION ANALYSIS 

Outline 

9.1 Correlation analysis 
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9.1 Correlation analysis 

 

Quick facts  

Number of variables Two or more 

Scale of variable(s) Continuous (ratio/interval) 

 

A correlation analysis tests the relationship between two continuous variables in terms 

of: a) how strong the relationship is, and b) in what direction the relationship goes. 

The strength of the relationship is given as a coefficient (the Pearson product-moment 

correlation coefficient, or simply Pearson’s r) which can be anything between -1 and 

1. But how do we know if the relationship is strong or weak? This is not an exact 

science, but here is one rule of thumb: 

 

Strength  

Negative Positive  

-1 1 Perfect 

-0.9 to -0.7 0.7 to 0.9 Strong 

-0.6 to -0.4 0.4 to 0.6 Moderate 

-0.3 to -0.1 0.1 to 0.3 Weak 

0 0 Zero 

 

Thus, the coefficient can be negative or positive. These terms, “negative” and 

“positive”, are not the same as good and bad (e.g. excellent health or poor health; high 

income or low income). They merely reflect the direction of the relationship.  

 

Direction  

Negative As the values of Variable 1 increases, the values of Variable 2 

decreases 

Positive As the values of Variable 1 increases, the values of Variable 2 

increases 

 

Note however that correlation analysis does not imply anything about causality: 

Variable 1 does not cause Variable 2 (or vice versa). The correlation analysis only 

says something about the degree to which the two variables co-vary.  
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Assumptions 

 

First, you have to check your data to see that the assumptions behind the correlation 

analysis hold. If your data “passes” these assumptions, you will have a valid result. 

 

 Checklist  

Two continuous 

variables 

Both variables should be continuous (i.e. interval/ratio). For 

example: Income, height, weight, number of years of 

schooling, and so on. Although they are not really 

continuous, it is still rather common to use ratings as 

continuous variables, such as: “How satisfied with your 

income are you?” (on a scale 1-10) or “To what extent do 

you agree with the previous statement?” (on a scale 1-5). 

Linear 

relationship 

between the two 

variables 

There needs to be a linear relationship between your two 

variables. You can check this by creating a scatterplot 

(described in Section 4.7).  

No outliers An outlier is an extreme (low or high) value. For example, 

if most individuals have a test score between 40 and 60, but 

one individual has a score of 96 or another individual has a 

score of 1, this will distort the test. 
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Correlation analysis: Function 

 

 

 

1. Go to the Menu bar, choose Analyze\Correlate\Bivariate.  

2. A new window called Bivariate Correlations will open. 

3. In the left box, all your variables are displayed. Highlight the variables 

for which you want to test the correlation, and then transfer them to 

Variables.  

4. Click on OK. 

 

Note that it is possible to include more than two variables, and in that case 

you will get correlation coefficients for each pair of variables. 
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Correlation analysis: Syntax 

 

  

 

CORRELATIONS 

  /VARIABLES=VARNAMES 

  /PRINT=TWOTAIL NOSIG 

  /MISSING=PAIRWISE. 

 

 

VARNAMES   Insert the names of at least two variables 
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Correlation analysis: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

CORRELATIONS 

  /VARIABLES=jobsat age 

  /PRINT=TWOTAIL NOSIG 

  /MISSING=PAIRWISE. 

 

 

jobsat Job satisfaction (1=Highly dissatisfied; 2=Somehwat 

dissatisfied; 3=Neutral; 4=Somewhat satisfied; 

5=Highly satisfied) 

 

age           Age (Min=18; Max=79) 
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Output 

 

The table called Correlations shows the results from the correlation analysis of the 

two variables jobsat and age. Note that the table is a matrix, meaning that it can be 

read from left to right or from the top to the bottom. Here, we focus on the row called 

Pearson Correlation. Of course, the correlation between jobsat and jobsat is perfect 

(r=1), and so is the correlation between age and age (r=1). Now, remember that an 

increasing value for age means that the individual is older, an an increasing value for 

jobsat means that the individual is more satisfied with his or her job. The correlation 

coefficient for jobsat and age is 0.413, which is positive. In other words: as the age 

increases, job satisfaction increases. Concerning the strength of the correlation, 0.413 

can be said to be moderate.  

 

Sig. (2-tailed) shows the p-value for the correlation. A p-value smaller than 0.05 

suggests that the correlation is statistically significant (at the 5 % level). SPSS also 

includes a significance test at the 1 % level, indicated by the asterisks (**) presented 

next to the correlation coefficient.  

 

 

 
 

 



 

143 

 

10. FACTOR ANALYSIS 

Outline 

10.1 Factor analysis 

10.2 Cronbach’s alpha 
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10.1 Factor analysis 

 

Quick facts  

Number of variables Two or more 

Scale of variable(s) Continuous (ratio/interval) or approximately continuous 

 

There are two general types of factor analysis: exploratory factor analysis and 

confirmatory factor analysis. It is the first type that will be covered here. The main 

feature of exploratory factor analysis (hereafter referred to as “factor analysis”) is that 

is enables us to investigate the underlying structure in the pattern of correlations 

between a number of variables (often referred to as “items”). If we have a large 

number of variables, we can thus investigate if these variables represent a smaller 

number of factors – or “dimensions”. Before getting into factor analysis in more detail, 

just a cautionary note: it is easy to let the data guide all your decisions, but do not 

forget what theory tells you before making these decisions! 

 

 

 
 

Variable 1 

 

Variable 2 

 

Variable 3 

 

Variable 4 

 

Variable 5 

 

Variable 6 

 

 

    Factor 1 

   Factor 2 
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Assumptions 

 

First, you have to check your data to see that the assumptions behind the factor 

analysis hold. If your data “passes” these assumptions, you will have a valid result. 

 

Checklist  

Ratio/interval/ordinal 

variables 

Your variables should be continuous (i.e. interval/ratio) 

or ordinal (but still approximately continuous). For 

example: Income, height, weight, number of years of 

schooling, or ratings. 

Linear associations The variables in the factor analysis should be associated 

with each other in a linear fashion (use scatter plots to 

check, see Section 4.7). 

Sample size Factor analysis requires rather large samples. However, 

recommendations on this topic vary greatly. Some 

recommendations highlight the absolute sample size 

(here, lower limits range from n=100 to n=500) whereas 

others says that subject-to-variable ratio is important 

(and here, ratios from 2:1 to 20:1 are suggested). 

No outliers An outlier is an extreme (low or high) value. For 

example, if most individuals have a test score between 40 

and 60, but one individual has a score of 96 or another 

individual has a score of 1, this will distort the test. 

 

Suppose that we have asked a bunch of individuals, six questions about their health. 

We conduct a factor analysis to see how many dimensions these questions reflect: do 

all questions reflect only one dimension (namely “health”) or can they be categorised 

into two or more dimensions (i.e. different types of health)? 
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Pre-tests 

 

First, we have to find out if it is a good idea to conduct a factor analysis at all. Here, 

you may use two tests to help you decide: 

 

Factor analysis or not? 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy 

The Bartlett’s Test of Sphericity 

 

The test called Kaiser-Meyer-Olkin Measure of Sampling Adequacy (in short: the 

KMO test) reflects the sum of partial correlations relative to the sum of correlations. 

It varies between 0 and 1, where a value closer to 1 is better. It has been suggested to 

use 0.5 as a minimum requirement. Thus, if the value is lower than 0.5, factor analysis 

may be inappropriate.  

 

The Bartlett’s Test of Sphericity tests the hypothesis that the correlation matrix is an 

identity matrix; if it is an identity matrix then there would be no correlations between 

the variables (and that is obviously not very good). Thus, the test needs to be 

statistically significant (i.e. p<0.05) so we are able to reject this hypothesis. If we 

cannot reject it, it would be inappropriate to conduct a factor analysis.  

 



 

147 

 

Number of factors 

 

So, suppose that we find that it is suitable to conduct a factor analysis. How do we 

ascertain how many factors/dimensions there are in our data? Well, there are several 

different ways to do this.  

 

Determining the number of factors 

Eigenvalue > 1 Eigenvalues are indicators of the variance explained by a factor. 

Using the rule “eigenvalue is greater than one” is very common. 

The reasoning behind this rule is that a factor should account 

for at least as much variance as any single variable. Thus, the 

average of all eigenvalues is one, and the factor analysis should 

thus extract factors that have an eigenvalue greater than this 

average value. 

Scree plot In a scree plot, factors have their eigenvalues plotted alongside 

the y-axis (i.e. vertical axis) in the order or magnitude. Factors 

explaining large amounts of variable appear to the left, whereas 

factors explaining little variance are aligned to the right. The 

somewhat weird task is here to “locate the elbow”. This means 

to identify the number of factors stated before the line starts 

becoming flat. 

Explained 

variance 

This refers to the amount of variation that the factor explains. 

Some suggest that 90 % should be used as a cut-off point, 

whereas others go as low as 50 %. 
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Factor loadings 

 

Once we have decided on the number of factors, we retrieve the “factor loadings”. A 

factor loading is basically a correlation coefficient (see Chapter 9) and, thus, it varies 

between -1 and +1 (where a value closer to -1 or +1 indicates a stronger correlation). 

Factor loadings are given for each variable, for each factor separately. In other words, 

a factor loading shows how strongly a certain variable correlates with the given factor. 

There are no exact rules for deciding on when a loading is strong enough, but one 

suggested rule of thumb is below -0.5 or above 0.5. However, sometimes a variable 

has strong loadings for more than one factor (called “cross-loading”). This can for 

example happen if you have not extracted enough factors, or if the factors are 

correlated. Sometimes a variable has weak loadings for all factors; this may suggest 

that this variable is weakly related to all other variables or that you need to explore an 

additional factor (or maybe even exclude this specific variable). 
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Rotation 

 

A factor analysis has the most interpretative value when: 1) Each factor loads strongly 

on only one factor; 2) Each factor shows at least three strong loadings; 3) Most 

loadings are either high or low; and 4) We get a “simple” factor structure. Rotation is 

a way of maximizing high loadings and minimizing low loadings so that we get the 

simplest factor structure possible. There are two main types of rotation: 

 

Rotation  

Orthogonal Assumes that the factors are uncorrelated 

Examples of sub types: equamax, quartimax and varimax 

Oblique Assumes that the factors are correlated 

Examples of sub types: direct oblimin and promax 

 

Thus, the orthogonal rotation is based on the assumption that the factors are not 

correlated to each other, i.e. that the different factors represent different unrelated 

dimensions of what you are examining. This is not always the case. For example, if 

you have several variables measuring health, and find one factor that reflects physical 

health and another one reflecting psychological health, it may not be reasonable to 

assume that physical and psychological health two unrelated dimension. In that case, 

you need to change the type of rotation to oblique.  
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Factor analysis: Function 

 

 

 

1. Go to the Menu bar, choose Analyze\Dimension Reduction\Factor.  

2. A new window called Factor Analysis will open. 

3. In the left box, all your variables are displayed. Highlight the variables 

that you want to include in the analysis, and then transfer them to 

Variables.  

4. To order Kaiser-Meyer-Olkin Measure of Sampling Adequacy and 

Bartlett’s Test of Sphericity: click on Descriptives, tick the box called 

KMO and Bartlett’s test of sphericity, and then click on Continue. 

5. To order a scree plot: click on Extraction, tick the box called Scree 

plot, and then click on Continue. 

6. If you for some reason want to tell SPSS exactly how many factors 

you want, go to Extraction, tick the box called Fixed number of 

factors, state the preferred number of factors, and then click on 

Continue. 

7. To change the rotation of the factor analysis: click on Rotation, tick 

the box for the preferred type of rotation (None; Varimax; Direct 

Oblimin; Quartimax; Equamax; or Promax), and then click on 

Continue. Note that you will only get rotated factor loadings if SPSS 

identifies at least two factors. 

8. Click on OK. 
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Factor analysis: Syntax 

 

  

 

FACTOR 

  /VARIABLES VARLIST1 

  /MISSING LISTWISE  

  /ANALYSIS VARLIST2 

  /PRINT INITIAL TESTNAME EXTRACTION ROTATION 

  /PLOT PLOTNAME 

  /CRITERIA MINEIGEN(1) ITERATE(25) 

  /EXTRACTION PC 

  /CRITERIA ITERATE(25) 

  /ROTATION ROTATIONTYPE 

  /METHOD=CORRELATION. 

 

 

VARLIST1   List all the variables you want to analyse 

 

VARLIST2 List all the variables you want to analyse (same as 

VARLIST1) 

 

TESTNAME   Name of the test you want to order 

    For example: 

    KMO (KMO and Bartlett’s test of sphericity) 

 

ROTATION   Add this here if you want to rotate your analysis 

 

PLOTNAME   Name of the plot you want to order 

    For example: 

    EIGEN (Scree plot) 

 

/CRITERIA ITERATE(25) Add this here if you are rotating your analysis 

 

ROTATIONTYPE  Name of the type of rotation you want to use 

    For example: 

    VARIMAX 
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Factor analysis: Example 

 

 

 

(Data: SPSS_data2.sav) 

 

 FACTOR 

  /VARIABLES imp_ideas imp_rich imp_secure imp_good imp_help 

imp_success imp_risk imp_behave imp_environ imp_trad 

  /MISSING LISTWISE  

  /ANALYSIS imp_ideas imp_rich imp_secure imp_good imp_help imp_success 

imp_risk imp_behave imp_environ imp_trad 

  /PRINT INITIAL KMO EXTRACTION ROTATION 

  /PLOT EIGEN 

  /CRITERIA MINEIGEN(1) ITERATE(25) 

  /EXTRACTION PC 

  /CRITERIA ITERATE(25) 

  /ROTATION VARIMAX 

  /METHOD=CORRELATION. 

 

 

imp_ideas  Important to think up new ideas 

imp_rich  Important to be rich 

imp_secure  Important living in secure surroundings 

imp_good  Important to have a good time 

imp_help  Important to help the people 

imp_success  Important being very successful 

imp_risk  Important with adventure and taking risks 

imp_behave  Important to always behave properly 

imp_environ  Important looking after the environment 

imp_trad  Important with tradition 

 

(1=Very much like me; 2=Like me; 3=Somewhat like me; 

4=Not like me; 5=Not at all like me) 
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Output/Step 1 

 

The first step is to look at the table called KMO and Bartlett’s Test. The estimate in 

the first row is the result from the KMO test. The value here is 0.792, which suggests 

that the factor analysis is appropriate. The estimate in the last row is the result from 

the Bartlett’s Test of Sphericity. The p-value here is 0.000, which also suggests that 

factor analysis is appropriate. 
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Output/Step 2 

 

The second step is to look at the table called Total Variance Explained. There is one 

row for each factor-solution (called Component). With regard to Initial Eigenvalues 

and the column called Total, the results show a suitable cut-off between two and three 

factors since the three-factor solution has an eigenvalue below 1. Thus, this suggests 

that a two-factor solution is preferable. Looking at the column called Cumulative %, 

the results show that the two-factor solution together explain approximately 46 % of 

the variance. That is not a high percentage but we may conclude that it is acceptable.  

 

One important thing to know is that SPSS automatically chooses to proceed with the 

solution that consists of the most factors that has an eigenvalue greater than one (in 

this case, the two-factor solution).   
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Output/Step 3 

 

The third step is to look at the graph called Scree Plot. Eigenvalues are presented 

alongside the y-axis and the number of the component (i.e. factor) is presented 

alongside the x-axis. Here we can see that the eigenvalues are getting much flatter (i.e. 

the elbow!) starting at the three-factor solution. Thus, once again it can be argued that 

we should go with the two-factor solution.  
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Output/Step 4 

 

The fourth step is to look at the table called Rotated Component Matrix. This table 

shows the factor loading for each variable and for each of the two factors separately.  

 

 

 
 

 

We identify for with factor each variable has the higher loading, we can conclude that 

the two factors contain the following variables: 

 

Factor 1 

Important living in secure surroundings (security) 

Important to help the people (benevolence) 

Important to always behave properly (conformity) 

Important looking after the environment (universalism) 

Important with tradition (tradition) 
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Factor 2 

Important to think up new ideas (self-direction) 

Important to be rich (power)  

Important to have a good time (hedonism)  

Important being very successful (achievement)  

Important with adventure and taking risks (stimulation) 

 

The ten variables used in this factor analysis actually stem from a theory of human 

values, developed by Schwartz. According to this theory, the variables should be 

categorised in the following way: 

 

Conservation: security, tradition, and conformity 

Openness to change: self-direction, stimulation, and hedonism 

Self-enhancement: power and achievement 

Self-transcendence: benevolence and universalism 

 

If we compare the theoretical categories with the factors derived from factor analysis, 

we actually see that the Factor 1 includes all variables theoretically associated with 

conservation and self-transcendence, whereas Factor 2 includes all variables 

theoretically associated with openness to change and self-enhancement. What do we 

do with this information then? Well, we need to examine possible reasons as to why 

the factor analysis did not reveal the same factors as the theory proposes. If we find 

no apparent problems with the empirics (e.g. missing data, problems with the 

questionnaire itself, etc.) we may suggest that the theory needs to be modified. At least 

it is important to discuss the differences between the theory and the empirics.  

 

Sometimes, we do not have a clear theory guiding the factor analysis and, thus, we 

have no a priori understanding about which factors that are reasonable to expect. In 

that case, it is common practice to focus on a factor solution with good properties (i.e. 

clear factor structure and high factor loadings). It is always a trade-off between theory 

and empirics: if theory has precedence over empirics, we may be more disposed to 

accept lower factor loadings.     
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A note on composite measures (indices) 

 

A common reason for conducting a factor analysis is that we want to make a 

composite measure (i.e. an index) of a set of variables. If these variables all fall into 

one single factor (with acceptable factor loadings), that is safe to do. If they clearly 

fall into different factors, a single index for these variables should not be calculated. 

Possible solutions could be to exclude variables not fitting into the factor of choice. 

Another solution is to create more than one index, reflecting different dimensions of 

the concept you focusing on.  
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10.2 Cronbach’s alpha 

 

Quick facts  

Number of variables Two or more 

Scale of variable(s) Continuous (ratio/interval) or approximately continuous 

 

The common application of the Cronbach’s alpha is when we have a composite 

measure – i.e. an index – and want to see if the variables included in the index actually 

reflect the same underlying factor/dimension. Formally speaking, the Cronbach's 

alpha is a measure of internal consistency; how closely related a number of items are 

as a group. The coefficient ranges between 0 and 1. A high alpha value indicates that 

items measure an underlying factor. However, it is not a statistical test but a test of 

reliability/consistency. 

 

One important thing to note is that the Cronbach’s alpha is affected by the number of 

variables: including a higher number of variables automatically increases the alpha 

value to some extent.  

 

Rule of thumb 

 

There are many rules of thumb with regard to what is considered a good or bad alpha 

value. Generally, an alpha value of at least 0.7 is considered acceptable. 

 

Alpha values  

Between 0.7 and 1.0 Acceptable 

Below 0.7 Not acceptable 
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Cronbach’s alpha: Function 

 

 

 

1. Go to the Menu bar, choose Analyze\Scale\Reliability Analysis.  

2. A new window called Reliability Analysis will open. 

3. In the left box, all your variables are displayed. Highlight the variables 

that you want to include in the analysis, and then transfer them to 

Items.  

4. If you want to see what would happen to the alpha value if you would 

exclude any specific variable, click on Statistics. Tick the box called 

Scale if item deleted, and then click on Continue. 

5. Click on OK. 
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Cronbach’s alpha: Syntax 

 

  

 

RELIABILITY 

  /VARIABLES=VARLIST 

  /SCALE('ALL VARIABLES') ALL 

  /MODEL=ALPHA 

  /SUMMARY=TOTAL. 

 

 

VARLIST   List all the variables you want to analyse 

 

/SUMMARY=TOTAL Add this if you want to see how the alpha value 

changes if a certain variable was excluded 
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Cronbach’s alpha: Example 

 

 

 

(Data: SPSS_data2.sav) 

 

RELIABILITY 

  /VARIABLES=imp_secure imp_help imp_behave imp_environ imp_trad 

  /SCALE('ALL VARIABLES') ALL 

  /MODEL=ALPHA 

  /SUMMARY=TOTAL. 

 

 

imp_secure  Important living in secure surroundings 

imp_help  Important to help the people 

imp_behave  Important to always behave properly 

imp_environ  Important looking after the environment 

imp_trad  Important with tradition 

 

(1=Very much like me; 2=Like me; 3=Somewhat like me; 

4=Not like me; 5=Not at all like me) 
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Output/Step 1 

 

The first step is to look at the table called Reliability Statistics. Here, you see the 

alpha value. In this case, it is 0.716.  
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Output/Step 2 

 

The second step is to look at the table called Item-Total Statistics. In the column for 

Cronbach’s Alpha if Item Deleted, you see what happens to the alpha value if any of 

the specific variables would be excluded from the test. In this specific case, the 

exclusion of any variable would actually decrease the alpha value – hence, it is better 

to keep all the variables in the index. If the results had been the opposite (i.e. the alpha 

value would increase if a certain variable was excluded), we may have considered 

removing that variable from the index – but any such decisions should always be 

evaluated against what is stipulated by the theory you use.  
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11. X, Y AND Z 

Outline 

11.1 X and Y 

11.2 Z: confounding, mediating and moderating variables 

 

We talk a lot about variables in this guide, because variables are the cornerstones of 

quantitative data materials and quantitative data analysis. Other terms are sometimes 

used instead of “variables” – such as “indicators”, “measures” or “items” – but they 

basically reflect the same thing.  

 

Associations 

 

In many types of analysis – such as when we compare means or conduct regression 

analysis – we are interested in the association between two (or more) variables. The 

term “association”, or “relationship”, reflects the assumption that the variables are 

related to one another in some way. Basically, that means that the variables are 

correlated.  

 

Effects 

 

We often assume that the one variable has an “effect” on another variable. Here, we 

are talking about statistical effect, not causal effect. In other words, while we may find 

that one of the variables has a statistical effect on the other variable, it does not mean 

that the first variable causes the second variable. A phrase commonly used in statistics 

to capture this is: “correlation does not imply causation”.  
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X, Y and Z 

 

Variables play different roles in the analysis. Researchers often use various terms to 

distinguish between these roles. Here, we will try to shed some light on the terms that 

are used. 

 

Variables 

X Independent variable; Exposure; Predictor 

Y Dependent variable; Outcome 

Z Covariate; Confounder; Mediator; Moderator; Effect modifier 
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11.1 X and Y 

 

 

 

 

 

 

If you read about a variable being “independent”, an “exposure”, or a “predictor” – 

what does that mean? Basically, it means that someone thinks that this variable has an 

(statistical) effect on another variable. For the sake of simplicity, let us just call this 

type of variable “x”. The other variable – the one that x is assumed to affect – is called 

“dependent” variable or “outcome”. Again, to make it simpler, we can call it “y”.  

 

 

Some examples 

 

Smoking (x) -> Lung cancer (y) 

Unemployment (x) -> Low income (y) 

Yoga lessons (x) -> Lower stress levels (y) 

 

 

The examples presented above may suggest that it is easy to know which variable is 

x and which is y, but this is not always the case. Sometimes we deal with more 

complex issues, such as the association between health and educational attainment: 

does a lower educational attainment (x) lead to worse health (y) or does poor health 

(x) result in lower educational attainment (y)? In cases like that you need to think 

about that is more reasonable, and what previous literature and theory would say about 

the issue at hand.  

 

 

x y 
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11.2 Z: confounding, mediating and 
moderating variables 

 

 

 

 

 

 

The association – between x and y – that we are most interested in is often called 

“main association”. This is the focus of our analysis. However, sometimes there are 

other variables that we might find important for this main association. Strictly 

speaking, those variables are also called “x” (or “covariates”) but for clarity we will 

label them “z”. There are three important types of z-variables that are common in data 

analysis: 

 

Types of “z” 

Confounder Both x and y are affected by z  

Mediator A part of the association between x and y goes through z 

Moderator Z affects the association between x and y 

 

  

x 
 
 

z? 

y 
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Confounding variables 

 

 

 

 

 

 

 

 

 

 

A confounder is a variable that influences both the x-variable and the y-variable and, 

thus, makes you think that there is an actual relationship between x and y (but it is due 

to z). Put differently, the confounder distorts the analysis. Suppose that we find that 

people who consume a lot of coffee (x) have an increased risk of lung cancer (y). A 

probable confounder could be cigarette smoking (z): smokers drink more coffee and 

have greater risk of lung cancer.  

 

In data analysis, we commonly want to get rid of the confounding effects – in that 

context, we often talk about “controlling” or “adjusting” for confounders.  

 

Mediating variables 

 

 

 

 

 

 

 

 

 

 

A mediator is a variable that is influenced by the x-variable and influences the y-

variable. Thus, some (it could be a little or a lot) of the effect of x on y is mediated 

through z. For example, let us say that we are interested in the association between 

parents’ educational attainment (x) and children’s success on the labour market (y). It 

could be reasonable to assume that the educational attainment of the parents (x) 

influences children’s own educational attainment (z), which in turn affects their 

following success on the labour market (y). 

x 

z 

y 

x 

z 

y 
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In data analysis, we often talk about “explaining” an association by the inclusion of 

certain mediating variables. Particularly when one has a data material that consists of 

information collected across several points in time (i.e. longitudinal or life course 

data), it is common to talk about mediation as “pathways” or “mechanisms”. It should 

however be highlighted that mediation analysis has become increasingly criticized 

(for statistical reasons that we will not discuss here). 

 

Moderating (or effect modifying) variables 

 

 

 

 

 

 

 

 

 

 

 

 

A moderator (or effect modifier) is a variable that influences the very association 

between the x-variable and the y-variable. Thus, the association between x and y looks 

different depending on the value of z. Suppose that we are interested in the association 

between unemployment (x) and ill-health (y). Here, it could be reasonably to assume 

that men’s and women’s health is affected differently by unemployment – in that case, 

gender would be a moderating variable (z).  

 

In data analysis, moderating variables are examined through something called 

“interaction analysis” (see Chapter 17).  

 

 

 

x y 

z 



 

171 

 

12. PREPERATIONS FOR 

REGRESSION ANALYSIS 

Outline 

12.1 What type of regression should be used? 

12.2 Dummies 

12.3 Standardization: z-scores 

12.4 Analytical strategy 

12.5 Missing data 

12.6 From study sample to analytical sample 
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12.1 What type of regression should be used? 

 

There are many different types of regression analysis. Some of the most common 

types are included in this guide: linear, logistic, ordinal regression, and multinomial. 

Which one you should choose depends on your outcome (y). 

 

Outcome (y) Type of regression 

Nominal with two categories, i.e. dichotomous 

(binary) 

Logistic regression 

Nominal with more than two categories, i.e. 

polytomous 

Multinomial regression 

Ordinal Ordinal regression 

Continuous (ratio/interval)  Linear regression 

 

Just to underline it one more time: the type of regression you choose depends on your 

outcome (y). However, your x-variable(s) can take on any form – they can be 

categorical (i.e. nominal/ordinal) or continuous (i.e. ratio/interval). If you include only 

one x-variable in your regression analysis, this is called “simple” (or “bivariate”) 

regression analysis. If you include two or more x-variables in your regression analysis, 

this is called “multiple” regression analysis. In multiple regression analysis, it is 

possible to mix different types of x-variables: you can thus use both categorical and 

continuous x-variables.  
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12.2 Dummies 

 

When we conduct regression analysis – regardless of the type – we can only include 

x-variables that are continuous (ratio/interval) or binary (i.e. they consist of only two 

values). A binary variable is sometimes called “dichotomous”, “binomial” or 

“dummy”. If we have a categorical variable with more than two values, such as in the 

example below, we need to “trick” the regression analysis to correctly analyse those 

variables. To do this, we create one dummy for each category of the variable: 

 

Example 

 

Variable 

   

Educational  

attainment               

   

 

 

Categories 

 

1=Compulsory   

2=Upper secondary 

3=University  

 

Dummy 

 

1=Compulsory, 0=Other 

1=Upper secondary, 0=Other 

1=University, 0=Other 

 

In the regression analysis, all dummies for the specific variable should be included as 

x-variables, except one. The dummy that you exclude – and it is your own choice 

which one you exclude – will be the “reference category”. The other dummies will be 

compared to the dummy that is excluded. Creating dummies is much easier using 

syntax that through the menus, but if you want to use the menus, you need to go 

through Recode Into Different Variables separately for each dummy.   

 

A note on the choice of reference category 

 

There are many different ways of choosing a reference category: 

 

Choosing a reference category 

The largest category, because we want a stable group to compare the other 

categories to 

The group in the middle, to represent the average 

The “best off” category – if increasing values of the outcome is more negative 

The “worst off” category – if increasing values of the outcome is more positive 

Note: never choose a very small group – you may end up with very strange 

estimates! 
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Dummies: Syntax 

 

  

 

For each dummy separately 

 

RECODE VARNAME (OLD AND NEW VALUES) INTO DUMMYNAME. 

EXECUTE. 

 

 

VARNAME     Insert the name of the original variable 

    For example: 

    income 

 

DUMMYNAME   Insert the name of the dummy variable 

    For example: 

    income_low 

    or 

    income_middle 

    or 

    income_high 

 

(OLD AND NEW VALUES)  Specify how you want to transform the values 

    Some examples: 

    (1=1) (2=0) (3=0) 
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Dummies: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

RECODE hometype (1=1) (2=0) (3=0) (4=0) INTO hometype_singlefam. 

RECODE hometype (1=0) (2=1) (3=0) (4=0) INTO hometype_multiplefam. 

RECODE hometype (1=0) (2=0) (3=1) (4=0) INTO hometype_townhouse. 

RECODE hometype (1=0) (2=0) (3=0) (4=1) INTO hometype_mobilehome. 

EXECUTE. 

 

 

hometype  Building type (1=Single family; 2=Multiple family; 

3=Townhouse; 4=Mobile home) 
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12.3 Standardization: z-scores 

 

The standard score – or the z-score – is very useful when we have continuous 

(ratio/interval) variables with different normal distributions. For example, if we have 

one variable called income (measured as annual household income in Swedish 

crowns) and another variable called years of schooling (measured as the total number 

of years spent in the educational system), these variables obviously have very different 

distributions. Suppose we want to compare which one – income or years of schooling 

– has a larger statistical effect on our outcome. That is not possible using the variables 

we have. The solution is to standardize (i.e. calculate z-scores for) these two variables 

so that they are comparable. 

 

Z-scores are expressed in terms of standard deviations from the mean. What we do is 

that we take a variable and “rescale” it so that it has a mean of 0 and a standard 

deviation of 1. Each individual’s value on the standardized variable indicates its 

difference from the mean of the original (unstandardized) variable in number of 

standard deviations. A value of 1.5 would thus suggest that this individual has a value 

that is 1½ standard deviations above the mean, whereas a value of -2 would suggest 

that this individual has a value that is 2 standard deviations below the mean.  

 

  

 



 

177 

 

Standardization: z-scores: Function 

 

 

 

1. Go to the Menu bar, choose Analyze\Descriptive 

Statistics\Descriptives.  

2. This will open up a new window called Descriptives. 

3. A small window will open, where you see two boxes.  

4. In the left box, all your variables are displayed. Here you choose the 

variable(s) you want to standardize. 

5. Click on the small arrow between the boxes to transfer the 

variable(s) to the box to the right.  

6. Tick the box called Save standardized values as variables.  

7. Click on OK to generate a standardized version of the variable(s).  
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Standardization: z-scores: Syntax 

 

  

 

DESCRIPTIVES VARIABLES=VARNAME 

  /SAVE. 

 

 

VARNAME    Insert the name of the variable you want to use. 

 

/SAVE   Insert this if you want to produce z-scores for your variable. 
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Standardization: z-scores: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

DESCRIPTIVES VARIABLES=unempl_03 age  

  /SAVE. 

 

 

unempl_03  Unemployment days in 2003 (ranges from 0 to 365) 

age    Age in years (Min=18; Max=79) 
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12.4 Analytical strategy 

 

Regression analysis is of course about data, but it is also about design. The way in 

which you think your variables are related needs to be translated into an “analytical 

strategy” (or “modelling strategy”. A good way to start is to make a drawing with 

boxes and arrows: each variable is put into one box and then you put simple-headed 

or double-headed arrows between the boxes to illustrate how the variables are 

associated to one another.  

 

A good analytical strategy should reflect the aim of the study. Suppose we are 

interested in the association between children’s cognitive ability and educational 

attainment in adulthood. To examine this association is thus the aim of the study. We 

think that this association may be confounded by parents’ educational attainment and 

mediated by children’s school marks. Moreover, we suspect that the association may 

look different depending on the child’s gender. The research questions can thus be 

formulated as:  

 

Question 1. Is children’s cognitive ability associated with educational 

attainment in adulthood?  

Question 2. If so, is this association confounded by parents’ educational 

attainment? 

Question 3. To what extent is the association between children’s cognitive 

ability and educational attainment in adulthood mediated by school marks in 

childhood? 

Question 4. Is there any gender difference in the association between children’s 

cognitive ability and educational attainment in adulthood? 

 

Accordingly, these are the variables we need to include in our analysis: 

 

x   Cognitive ability in childhood 

y   Educational attainment in adulthood 

z (confounder)  Parents’ educational attainment 

z (mediator)  School marks in childhood 

z (moderator)  Child’s gender 
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And this is how we may choose to illustrate our analytical strategy: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Often, we want to break down our analysis in different steps – or “regression models”. 

Each model commonly reflects one research question. In the present example, we 

would have a whole set of models that would include different variables: 

 

Model 1 Cognitive ability in childhood (x) and educational attainment in 

adulthood (y) 

Model 2 Cognitive ability in childhood (x), educational attainment in 

adulthood (y), and parents’ educational attainment (z) 

Model 3 Cognitive ability in childhood (x), educational attainment in 

adulthood (y), and school marks in childhood (z) 

Model 4 Cognitive ability in childhood (x), educational attainment in 

adulthood (y), and gender (z) 

 

 

 

  

 

Cognitive ability in 

childhood  

(x) 

Gender  

(z: moderator) 

Educational 

attainment in 

adulthood (y) 

Parents’ educational 

attainment  

(z: confounder) 

School marks  

in childhood  

(z: mediator) 
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12.5 Missing data 

 

As we discussed earlier (see Section 2.1), it is common that some individuals in our 

data material have missing information for one or more of the variables. Missing data 

is sometimes called “attrition” (particularly in register data) and sometimes “non-

response” (particularly in survey/questionnaire data). Attrition or non-response can be 

external or internal: 

 

External or internal? 

External For some reason, the individuals are not included in the register data 

(they have immigrated, died, moved, are imprisoned, etc.) or do not 

participate in the survey (they decline, are too sick, cannot be reached, 

etc.). 

Internal For some reason, the individual has no information for a specific 

variable or a set or variables (they missed a page of the questionnaire, 

they refuse to answer specific questions, etc.). 

 

As shown above, there are many reasons for missing data. If the missingness is 

problematic or not, depend on which type of missing data we have. In statistical 

analysis, there are three types of missing data: 

 

Types of missing data 

MCAR Missing Completely At Random: 

The probability of missing data is unrelated to both observed and 

unobserved data; it is completely by chance alone 

MAR Missing At Random:  

The probability of missing data is unrelated to unobserved data but may 

be related to observed data 

NMAR Missing Not At Random:  

The probability of missing data is related to unobserved data 

 

This was probably a bit confusing – let us exemplify the differences between MCAR, 

MAR and NMAR. Suppose we examine the distribution of income in the Swedish 

population. If missing data were MCAR, it means that the missingness is unrelated to 

both observed data (e.g. gender, employment status) and unobserved data (e.g. lower 

income does not influence the risk of missingness). If missing data were MAR, it 

would mean that missingness could be related to other variables in the data set, but 

the probability of missingness is not increased by certain values of the variable itself 

(e.g. individuals having lower incomes). Finally, if individuals who had certain values 
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of the variables itself were more likely to be missing, we would have MNAR. 

 

How may we deal with missing data? 

 

There are several ways of assessing whether missingness is MCAR, MAR or MNAR, 

but we are not going to get into advanced statistical stuff here. The most important 

advice is that you have to know your data well: produce descriptive statistics for your 

study variables to see the extent of missingness in the data material. Obviously, if you 

have a small number of individuals in your data material, a couple of missing values 

would have more serious consequences than if you have a couple of missing values 

in a data material based on the total population of a country.  

 

A sound strategy to map out and illustrate potential problems with missingness is first 

to find out anything you can about the reasons for external attrition. Why are some 

individuals not included in your data set? Is it likely that they similar in any important 

way or is the missingness due to technical reasons? Then you get into the issue of 

internal attrition. Analysing internal attrition is simply called “attrition analysis” or 

“non-response analysis”. What you do here is to pick one or more variables for which 

all individuals in the study sample has information, such as gender, age, or some other 

socio-demographic variable. Produce descriptive statistics (choice of type of 

descriptive statistics depends on the measurement scale) for those variables, for all 

individuals in the study sample. Then you produce descriptive statistics for the same 

variables, but now only for the individuals in the analytical sample (Section 12.6 

describes how to define an analytical sample).  

 

For example, our study sample contains 10,000 individuals. Approximately 49 % are 

men and 51 % are women. The mean age is 45 years. Due to missing data on some of 

the variables we want to include in our analysis, our analytical sample is reduced to 

9,451 individuals. In this sample, 46 % are men and 54 % are women. The mean age 

is 47 years. You can illustrate this in a simple descriptive table: 

 

 Study sample (n=10,000) Analytical sample (n=9,451) 

Gender   

   Man 49 % 46 % 

   Woman 51 % 54 % 

 Age (mean) 45 years 47 years 

 

If we thus compare the distribution of gender and age in the study sample with the 

distribution of gender and age in the analytical sample, we can conclude that women 
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and older individuals are more likely to be included in our analysis. This is 

information that could be important to have when we interpret our results. 
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12.6 From study sample to analytical sample 

This section is an attempt to connect the two previous sections. It is like this: we often 

split our analysis in different steps or models. Thus, different models include different 

sets of variables; and different variables have different amount of missing data. The 

total number of individuals may thus vary across models, and this makes it difficult 

to compare the results between the models. In other words, we must ensure that all 

our analyses – and all steps of analysis – are based on the same individuals. These 

individuals represent our “analytical sample” (or “effective sample”). Put differently: 

our analytical sample is defined as only those individuals who have valid information 

(i.e. no missing) for all variables we use in our analysis.  

 

It is good to first check the amount of missing data for each of the variables included 

in the analysis, to see if any certain variable is particularly problematic in terms of 

missingness. If a variable has serious problems with missingness, it could be wise to 

exclude it from the analysis (but it depends on how important the variable is to you).  

 

The analytical sample should not only be the basis for regression analysis, but all other 

statistical tests and descriptive statistics should also be based on the analytical sample. 

Moreover, make sure to state the total number of individuals in the heading of each 

table and each figure. It could look something like this: 

 

 

Some examples 

 

Table 1. Descriptive statistics for all study variables (n=9,451). 

 

Figure 5. Histogram of annual income (n=9,451). 

 

Table 3. The association between educational attainment and mortality. Results 

from logistic regression analysis, separately for men (n=4,701) and women 

(n=4,750). 
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The “pop” variable 

 

It is rather easy to define an analytical sample in SPSS. First, you need to determine 

exactly which variables are included in the analysis (i.e. all variable you use, not all 

variables in the data material). They should be properly recoded as you want them, 

and all missing values should be coded as actually missing in SPSS (Recode, see 

Section 5.1). Second, you create a “pop” variable – “pop” stands for population – 

through the Compute (see Section 5.2). Third, you make a frequency table of the pop 

variable. The individuals who have the highest value on this variable constitute your 

analytical sample. Finally, you use this pop variable to restrict everything you do from 

that point onwards, to include only those with the desired value on the pop variable 

(Select cases, see Section 5.3). 
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From study sample to analytical sample: Syntax 

 

  

 

COMPUTE NAME=nvalid(VARLIST). 

EXECUTE. 

 

 

NAME Insert the name you want to give the variable 

indicating the analytical sample. 

 

VARLIST Insert the names of all study variables, separate 

them by comma. 

    For example: 

    gender, age, marital_status, income 

 

Note: SPSS will calculate the number of valid values with this command. If you 

include a variable list with four variables, the pop variable will range between zero 

and four. Individuals with the value four will have valid information for all variables 

and thus constitute your analytical sample (and subsequently, you select only these 

individuals through the select-cases command). If you would have included nine 

variables, the pop variable will range between zero and nine. In that case, individuals 

with the value nine would have constituted your analytical sample.  
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From study sample to analytical sample: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

COMPUTE pop=nvalid(gender, age, marital, jobsat, unempl_03, unempl_05). 

EXECUTE. 
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13. LINEAR REGRESSION 

Outline 

13.1 Simple linear regression 

13.2 Multiple linear regression 

13.3 Model diagnostics 

 

Before you begin, make sure that you have defined your analytical sample correctly 

(see Section 12.6).  
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Introduction 

 

Linear regression is used when y is continuous (ratio/interval; see Section 2.2). If you 

have only one x, it is called “simple” linear regression, and if you have more than one 

x, it is called “multiple” linear regression. Regardless of whether you are doing a 

simple or a multiple regression, the x-variables can be categorical (nominal/ordinal) 

and/or continuous (ratio/interval). 

 

Key information from linear regression 

1. Direction  

Negative Minus sign before the B coefficient 

Positive No minus sign before the B coefficient 

2. Effect size  

B coefficient How much does y change for every one-unit 

increase in x? 

3. Statistical significance  

P-value p<0.05 Statistically significant at the 5 % level 

p<0.01 Statistically significant at the 1 % level 

p<0.001 Statistically significant at the 0.1 % level 

95 % Confidence intervals Interval does not include 0: 

Statistically significant at the 5 % level 

Interval includes 0:  

Statistically non-significant at the 5 % level 

 

B coefficients (B) 

 

A linear regression analysis describes the linear association between x and y. The 

effect that x has on y is estimated through a “Beta coefficient” – or “B coefficient”. 

The B coefficient is interpreted in the following way: “for every one-unit increase in 

x, y increases/decreases by [the B coefficient]”. Accordingly, if you get a negative B 

coefficient (below 0), you say: “for every one-unit increase in x, y decreases by [the 

B coefficient]”, and if you get a positive B coefficient (above 0), you say: “for every 

one-unit increase in x, y increases by [the B coefficient]”. What the B coefficient 

actually stands for – and whether we can say that an effect is small or big – depends 

on the values of x and y.  
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P-values and confidence intervals 

 

In linear regression analysis you can of course get information about statistical 

significance, in terms of both p-values and confidence intervals. The p-values and the 

confidence intervals will give you partly different information, but: they are not 

contradictory. If the p-value is below 0.05, the 95 % confidence interval will not 

include 0 (statistical significance at the 5 % level), and if the p-value is above 0.05, 

the 95 % confidence interval will include 0 (statistical non-significance at the 5 % 

level).  

 

Note that when you look at the p-value, you can rather easily distinguish between the 

significance levels (i.e. you can directly say whether you have statistical significance 

at the 5 % level, the 1 % level, or the 0.1 % level). When it comes to confidence 

intervals, SPSS will by default choose 95 % level confidence intervals (i.e. statistical 

significance at the 5 % level). For some analyses, it is however possible to change the 

confidence level for the intervals. For example, you may instruct SPSS to show 99 % 

confidence intervals instead. 

 

R-Squared 

 

You also get information about something called “R-Squared” or “R2”. This term 

refers to amount of the variation in y that is explained by the inclusion of the x-

variable. The R2 value ranges between 0 and 1 – a higher value means a higher amount 

of explained variation. Generally speaking, the higher the R2 values, the better the 

model fits the data (i.e. the model has better predictive ability).  

 

Simple versus multiple regression models 

 

The difference between simple and multiple regression models, is that in a multiple 

regression each x-variable’s effect on y is estimated while taking into account the 

other x-variables’ effects on y. We then say that these other x-variables are “held 

constant”, or “adjusted for”, or “controlled for”. Because of this, multiple regression 

analysis is a way of dealing with the issue of “confounding” variables, and to some 

extent also “mediating” variables (see Section 11.2). 

 

It is highly advisable to run a simple linear regression for each of the x-variables 

before including them in a multiple regression. Otherwise, you will not have anything 

to compare the adjusted B coefficients with (i.e. what happened to the B coefficients 

when other x-variables were included in the analysis). Including multiple x-variables 
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in the same model usually (but not always) means that the associations are reduced in 

strength – which would of course be expected if the x-variables overlapped in their 

effect on y.      

 

Define your analytical sample 

 

Before you begin, make sure that you have defined your analytical sample correctly 

(see Section 12.6).  
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13.1 Simple linear regression 

 

Quick facts  

Number of variables One dependent (y) 

One independent (x) 

Scale of variable(s) Dependent: continuous (ratio/interval) 

Independent: categorical (nominal/ordinal) or continuous 

(ratio/interval) 
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Simple linear regression: Function 

 

 

 

1. Go to the Menu bar, choose Analyze\Regression\Linear.  

2. A new window called Linear Regression will open.   

3. In the left box, all your variables are displayed. You choose the 

variable you want to have as your dependent variable (y) and transfer 

it to the box called Dependent.  

4. Then you choose the variable you want as your independent variable 

(x) and transfer it to the box called Independent(s). 

5. Click on Statistics. 

6. Tick the box for Confidence Intervals. 

7. Click on Continue. 

8. Click on OK to get the results in your Output window.  
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Simple linear regression: Syntax 

 

  

 

REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS CI(95) R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN  

  /DEPENDENT DEPVAR 

  /METHOD=ENTER INDEPVAR. 

 

 

DEPVAR   Name of the dependent variable. 

 

INDEPVAR   Name of the independent variable. 
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Simple linear regression with a continuous x 

 

 

Example 1  

Suppose we want to examine the association between unemployment days (x) and 

income (y) by means of a simple linear regression analysis. Unemployment days 

are measured as the total number of days in unemployment during a year, and 

ranges from 0 to 365. Income is measured in thousands of Swedish crowns per 

month and ranges between 20 and 40 thousands of Swedish crowns. Let us say that 

we get a B coefficient that is -0.13. That would mean that for each one-unit increase 

in unemployment days, income would decrease by 0.13. Given the values of our 

variables, we can conclude that for each additional day in unemployment, monthly 

income would decrease by 130 SEK on average.  

 

 

 

Example 2  

In another example, we may examine the association between intelligence scores 

(x) and years of schooling (y). Intelligence scores are measured by a series of tests 

that render various amounts of points, and ranges between 20 and 160 points. Years 

of schooling is measured as the total number of years spent in the educational 

system and ranges from 9 to 20 years. Here, we get a B coefficient that is 0.08. 

Given the values of our variables, we can conclude that for each additional point 

on the intelligence variable, the number of years spent in the educational system 

increases by 0.08 on average (corresponding to approximately one month).  
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Simple linear regression with a continuous x: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS CI(95) R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN  

  /DEPENDENT hourstv 

  /METHOD=ENTER age. 

 

 

hourstv   Hours spent watching TV last week (Min=0; Max=36) 

age   Age in years (Min=18; Max=79) 
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Output/Step 1 

 

The first step is to look at the table called Model Summary. Here you focus on the 

column for Adjusted R Square, which reflects the so-called “R2”. The value here 

reflects how much of the variation in the dependent variable (hourstv) that is explained 

by the variation in the independent variable (age). Just move the decimal two places 

to the right to be able to interpret the R2 value as percentages. Accordingly, we see 

that age explains 0.1 % of the variation in hours spent watching TV (that is obviously 

very little).  
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Output/Step 2 

 

The second step is to look at the table called Coefficients. Start focusing on the column 

called B; this is the B coefficient. The B coefficient in this example is -0.011, which 

first of all means we have a negative association between age and hourstv. Based on 

what we know about the values of these two variables, we can conclude the following: 

for every one year increase in age, the number of hours spent watching TV decreases 

by 0.011 hours.  

 

The column called Sig. shows the p-value. It is 0.010, which means that the 

association between age and hourstv is statistically significant (at the 1 % level). Then 

we look at the part of the table called 95 % Confidence Interval for B. This gives us 

the lower confidence limit (Lower Bound) and the upper confidence limit (Upper 

Bound). In the present example, the lower limit is -0.019 whereas the upper limit is -

0.003. The interval does not include the null value (which is always x=0 in linear 

regression) and, thus, the results are statistically significant (at the 5 % level).  
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Simple linear regression with a binary x 

 

 

Example 1  

Suppose we want to examine the association between gender (x) and income (y) by 

means of a simple linear regression analysis. Gender has the values 0=Man and 

1=Woman. Income is measured in thousands of Swedish crowns per month and 

ranges between 20 and 40 thousands of Swedish crowns. Let us say that we get a B 

coefficient that is -1.3. That would mean that for every one-unit increase in gender 

– i.e. changing from the category of men to the category of women – income would 

decrease by 1.3. Given the values of our variables, we can conclude that women 

have 1300 SEK less in monthly income compared to men.  

 

 

 

Example 2  

Suppose we want to examine the association between having small children (x) and 

the number of furry pets (y) by means of a simple linear regression analysis. Having 

small children is measured as either 0=No or 1=Yes. The number of furry pets is 

measured as the number of cats, dogs or other furry animals living in the household, 

and ranges between 0 and 10. Let us say that we get a B coefficient that is 0.98. 

That would mean that for every one-unit increase in having small children – i.e. 

going from not having small children to having small children – the number of furry 

pets would increase by 0.98. Given the values of our variables, we can conclude 

that those who have small children have almost one more furry pet compared to 

those who do not have small children.  
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Simple linear regression with a binary x: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS CI(95) R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN  

  /DEPENDENT hourstv 

  /METHOD=ENTER marital. 

 

 

hourstv   Hours spent watching TV last week (Min=0; Max=36) 

marital   Marital status (0=Unmarried; 1=Married) 
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Output/Step 1 

 

The first step is to look at the table called Model Summary. Here you focus on the 

column for Adjusted R Square, which reflects the so-called “R2”. The value here 

reflects how much of the variation in the dependent variable (hourstv) that is explained 

by the variation in the independent variable (marital). Just move the decimal two 

places to the right to be able to interpret the R2 value as percentages. Accordingly, we 

see that marital status explains 0.1 % of the variation in hours spent watching TV (that 

is obviously not much).  
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Output/Step 2 

 

The second step is to look at the table called Coefficients. Start focusing on the column 

called B; this is the B coefficient. The B coefficient in this example is 0.403, which 

first of all means we have a positive association between marital and hourstv. Based 

on what we know about the values of these two variables, we can conclude the 

following: the number of hours spent watching TV is 0.403 higher among those who 

are married compared to those who are unmarried.  

 

The column called Sig. shows the p-value. It is 0.006, which means that the 

association between marital and hourstv is statistically significant (at the 1 % level). 

Then we look at the part of the table called 95 % Confidence Interval for B. This gives 

us the lower confidence limit (Lower Bound) and the upper confidence limit (Upper 

Bound). In the present example, the lower limit is 0.116 and the upper limit is 0.690. 

The interval does not include the null value (which is always x=0 in linear regression) 

and, thus, the results are statistically significant (at the 5 % level).  
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Simple linear regression with a categorical x (dummies) 

 

 

Example 1  

We want to investigate the association between educational attainment (x) and 

income (y) by means of a simple linear regression analysis. Educational attainment 

has the values: 1=Compulsory education, 2=Upper secondary education, and 

3=University education. Income is measured in thousands of Swedish crowns per 

month and ranges between 20 and 40 thousands of Swedish crowns. Since our x-

variable is categorical with more than two categories, we have to create dummies 

(one 0/1 coded variable for each category). We choose those with compulsory 

education as our reference category, meaning that this dummy will not be included 

in the analysis. We will thus get one B coefficient for upper secondary education 

and one B coefficient for university education. Each of these should be compared 

to the reference category. Let us say that we get a B coefficient for upper secondary 

education that is 2.1 and we get a B coefficient for university education that is 3.4. 

First of all, we can conclude – based on the direction of the estimates – that higher 

educational attainment is associated with higher income. More specifically, those 

with upper secondary education have (on average) 2100 SEK higher income 

compared to those with compulsory education, and those with university education 

have (on average) 3400 SEK higher income compared to those with compulsory 

education. 
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Example 2  

Suppose we are interested in the association between family type (x) and children’s 

average school marks (y). Family type has three categories: 1=Two-parent 

household, 2=Joint custody, and 3=Single-parent household. Children’s average 

school marks range from 1 to 5. Since our x-variable is categorical with more than 

two categories, we have to create dummies (one 0/1 coded variable for each 

category). We choose children living in a two-parent household as our reference 

category, meaning that this dummy will not be included in the analysis. We will 

thus get one B coefficient for joint custody and one B coefficient for single-parent 

household. Each of these should be compared to the reference category. The 

analysis results in a B coefficient of -0.1 for joint custody and a B coefficient of -

0.9 for single-parent household. That would mean that children living in joint 

custody families have a 0.1 point lower score for average school marks compared 

to those living in two-parent households. Moreover, children living in single-parent 

households have a 0.9 point lower score for average school marks compared to 

those living in two-parent households. 
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Simple linear regression with a categorical x (dummies): Example 

 

 

 

(Data: SPSS_data1.sav) 

 

REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS CI(95) R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN  

  /DEPENDENT income 

  /METHOD=ENTER agecat_2534 agecat_3549 agecat_5064 agecat_6579. 

 

 

income Household income in thousands of dollars (Min=9; 

Max=1073) 

agecat_1824   (0=No; 1=Yes)  

agecat_2534   (0=No; 1=Yes) 

agecat_3549   (0=No; 1=Yes) 

agecat_5064   (0=No; 1=Yes) 

agecat_6579   (0=No; 1=Yes) 

 

 



 

207 

 

Output/Step 1 

 

The first step is to look at the table called Model Summary. Here you focus on the 

column for Adjusted R Square, which reflects the so-called “R2”. The value here 

reflects how much of the variation in the dependent variable (income) that is explained 

by the dummies of the independent variable (agecat). Just move the decimal two 

places to the right to be able to interpret the R2 value as percentages. Accordingly, we 

see that the dummies of agecat explain 12.1 % of the variation in household income.  
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Output/Step 2 

 

The second step is to look at the table called Coefficients. Start focusing on the column 

called B; here we have the B coefficients. The dummy agecat_1824 was chosen as the 

reference category and is thus not included. The other B coefficients should be 

compared to that category. The B coefficient for agecat_2534 is 14.972 which means 

that individuals aged 25-34 have (on average) almost 15000 dollars more in household 

income compared to individuals in ages 18 to 24. The B coefficient for agecat_3549 

is 35.909, meaning that individuals aged 35-49 have (on average) almost 36000 

dollars more in household income compared to individuals in ages 18 to 24. The B 

coefficient for agecat_5064 is 60.033, which suggests that individuals aged 50-64 

have (on average) roughly 60000 dollars more in household income compared to 

individuals in ages 18 to 24. Finally, the B coefficient for agecat_6579 is 27.094, 

which suggests that individuals aged 65-79 have (on average) roughly 27000 dollars 

more in household income compared to individuals in ages 18 to 24.  

 

The column called Sig. shows the p-value for each category of agecat. All of them are 

0.000, which means that the differences between the reference category and each of 

the remaining categories are statistically significant (at the 0.1 % level). Then we look 

at the part of the table called 95 % Confidence Interval for B. This gives us the lower 

confidence limits (Lower Bound) and the upper confidence limits (Upper Bound). In 

the present example, the intervals do not include the null value (which is always x=0 

in linear regression) and, thus, the results are statistically significant (at the 5 % level).  
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13.2 Multiple linear regression 

 

Quick facts  

Number of variables One dependent (y) 

At least two independent (x) 

Scale of variable(s) Dependent: continuous (ratio/interval) 

Independent: categorical (nominal/ordinal) and/or 

continuous (ratio/interval) 
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Multiple linear regression: Function 

 

 

 

1. Go to the Menu bar, choose Analyze\Regression\Linear.  

2. A new window called Linear Regression will open.   

3. In the left box, all your variables are displayed. You choose the 

variable you want to have as your dependent variable (y) and transfer 

it to the box called Dependent.  

4. Then you choose the variables you want as your independent variables 

(x) and transfer them to the box called Independent(s). 

5. Click on Statistics. 

6. Tick the box for Confidence Intervals. 

7. Click on Continue. 

8. Click on OK to get the results in your Output window.  
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Multiple linear regression: Syntax 

 

  

 

REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS CI(95) R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN  

  /DEPENDENT DEPVAR 

  /METHOD=ENTER INDEPVARS. 

 

 

DEPVAR  Name of the dependent variable. 

 

INDEPVARS  List the names of the independent variables. 
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Multiple linear regression  

 

 

Example  

Suppose we are interested to see if the number of furry pets (y) is related to having 

small children (x), residential area (x), and income (x). The number of furry pets is 

measured as the number of cats, dogs or other furry animals living in the household, 

and ranges between 0 and 10. Having small children is measured as either 0=No or 

1=Yes. Residential area has the values 1=Metropolitan, 2=Smaller city, and 

3=Rural. Income is measured as the yearly household income from salary in 

thousands of SEK (ranges between 100 and 700 SEK).  

 

When we do our linear regression, we can include the variables “having children” 

and “income” as they are, since the first is binary and the other is continuous. The 

remaining variable – residential area – is categorical with more than two values and 

therefore dummies must be used. We create one dummy for each category of 

“residential area”. The first dummy (metropolitan) is chosen as the reference 

category and is thus excluded from the analysis.   

 

In the regression analysis, we get a B coefficient for having small children that is 

0.51. That means that the number of furry pets is higher among those who have 

small children. This association is adjusted for residential area and income. With 

regards to residential area, we get a B coefficient for “smaller city” of 2.02 and the 

B coefficient for “rural” is 4.99. That suggests, firstly, that the number of furry pets 

is higher (about two more pets, on average) among individuals living in smaller 

cities compared to metropolitan areas. Secondly, the number of furry pets is much 

higher (almost five more pets, on average) among individuals living in rural areas 

compared to metropolitan areas. This association is adjusted for having small 

children and income. Finally, the B coefficient for income is -0.1. This suggests 

that for every one-unit increase in income (i.e. for every additional one thousand 

SEK), the number of furry pets decrease by 0.1. This association is adjusted for 

having small children and residential area.     
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Multiple linear regression: Example  

 

 

 

(Data: SPSS_data1.sav) 

 

REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS CI(95) R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN  

  /DEPENDENT hourstv 

  /METHOD=ENTER income marital agecat_2534 agecat_3549 agecat_5064 

agecat_6579. 

 

 

hourstv     Hours spent watching TV last week (Min=0; Max=36) 

income Household income in thousands of dollars (Min=9; 

Max=1073) 

marital     Marital status (0=Unmarried; 1=Married) 

agecat_1824   (0=No; 1=Yes) Reference category  

agecat_2534   (0=No; 1=Yes) 

agecat_3549   (0=No; 1=Yes) 

agecat_5064   (0=No; 1=Yes) 

agecat_6579   (0=No; 1=Yes) 
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Output/Step 1 

 

The first step is to look at the table called Model Summary. Here you focus on the 

column for Adjusted R Square, which reflects the so-called “R2”. The value here 

reflects how much of the variation in the dependent variable (hourstv) that is explained 

by the independent variables (income, marital¸ dummies of agecat). Just move the 

decimal two places to the right to be able to interpret the R2 value as percentages. 

Accordingly, we see that the independent variables explain 0.8 % of the variation in 

hours spent watching TV.  
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Output/Step 2 

 

The second step is to look at the table called Coefficients. Start focusing on the column 

called B; here we have the B coefficients. With regard to income, we can see that the 

B coefficient is 0.005. This means that for every one-unit increase in household 

income (i.e. every additional one thousands of dollars in household income), the 

number of hours watching TV last week increases by 0.005. The column called Sig. 

shows the p-value for income; it is 0.000, which means that the association between 

income and hourstv is statistically significant (at the 0.1 % level). Then we look at the 

part of the table called 95 % Confidence Interval for B. This gives us the lower 

confidence limits (Lower Bound) and the upper confidence limits (Upper Bound). For 

income, the interval does not include the null value (which is always x=0 in linear 

regression) and, thus, the results are statistically significant (at the 5 % level). The 

conclusion here is that there is a statistically significant association between income 

and TV watching – where higher income is related to more TV watching – also when 

marital status and age is adjusted for.  

 

The B coefficient for marital status is 0.391, suggesting that married individuals 

watched more TV compared to unmarried individuals (we can conclude this since 

married have the higher value in the variable and hence the unmarried are 

automatically chosen as the reference category). The column called Sig. shows the p-

value for marital status; it is 0.007, which means that the association between marital 

and hourstv is statistically significant (at the 1 % level). Then we look at the part of 

the table called 95 % Confidence Interval for B. This gives us the lower confidence 

limits (Lower Bound) and the upper confidence limits (Upper Bound). For marital 

status, the interval does not include the null value (which is always x=0 in linear 

regression) and, thus, the results are statistically significant (at the 5 % level). The 

conclusion here is that there is a statistically significant association between marital 

status and TV watching – where married individuals watch more TV than unmarried 

individuals – also when income and age is adjusted for. 

 

Then we have one B coefficient for each of the dummies of age. The dummy 

agecat_1824 was chosen as the reference category and is thus not included. The other 

B coefficients should be compared to that category. The B coefficient for agecat_2534 

is 0.889 which means that individuals aged 25-34 watch more TV compared to those 

aged 18-24. The B coefficient for agecat_3549 is 0.532 which means that individuals 

aged 35-49 watch more TV compared to those aged 18-24. The B coefficient for 

agecat_5064 is 0.136 which means that individuals aged 50-64 watch more TV 

compared to those aged 18-24. Finally, the B coefficient for agecat_6579 is -0.169 

which means that individuals aged 65-79 watch less TV compared to those aged 18-
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24.  

 

The column called Sig. shows the p-value for each category of agecat. The two first 

dummies have p-values of 0.001 and 0.039, which means that they are statistically 

significantly different (at the 0.1 % level and the 5 % level respectively) from the 

reference category. The two latter dummies have p-values greater than 0.05, which 

that there are no statistically significant differences from the reference category. Then 

we look at the part of the table called 95 % Confidence Interval for B. This gives us 

the lower confidence limits (Lower Bound) and the upper confidence limits (Upper 

Bound). For agecat, the intervals do not include the null value (which is always x=0 

in linear regression) for the first two dummies and, thus, these results are statistically 

significant. For the other two dummies, the intervals do include the null value and, 

thus, these results are not statistically significant. The conclusion here is that there is 

a partly statistically significant association between age and TV watching: the 

individuals watching the most TV are those in ages 25-34, but also those in ages 35-

49 watch a lot of TV. TV watching is less common among those below the age of 25 

as well as 50 years or older. These results are adjusted for income and marital status.   
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13.3 Model diagnostics 

 

First, it should be emphasised that a regression model generally has the aim to predict 

or “forecast” the value of y, depending on the values of the x-variables. Linear 

regression is concerned with finding the best-fitting straight line through the data 

points. Imagine that we make a scatterplot of two continuous variables; then a line is 

chosen so that it comes as close to all of the data points as possible. The best-fitting 

line is called a regression line.  

 

The regression line has an “intercept” (or “constant”) and a “slope”. The intercept is 

where the regression line strikes the y-axis when the value of the x-variable(s) is 0. 

The slope is basically the steepness of the line; i.e. how much y changes when x 

increases.   

 

The regression model thus gives us predicted values of y across the values of the x-

variable(s). Of course, there is generally a difference between what the model predicts 

and what the individuals’ actual (observed) values are. This difference is called 

“residual” and is calculated as the observed value minus the predicted value.  

 

Often, “error” is used instead of “residual”, and although these terms are closely 

related, they are not the exact same thing: an error is the difference between the 

observed value and the population mean (and the population mean is typically 

unobservable), whereas a residual is the difference between the observed value and 

the sample mean (and the sample mean is observable).    
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Assumptions 

 

Before we can trust the results from our linear regression analysis to be valid, we need 

to assess our model to check that it does not violate any of the fundamental 

assumptions of linear regression.  

 

Checklist  

No outliers Outliers are individuals who do not follow the overall 

pattern of data.  

Homoscedasticity The variance around the regression line should be constant 

across all values of the x-variable(s). 

Normality The residuals for our x-variables should be normally 

distributed. 

Linearity The effect of x on y should be linear. 

No 

multicollinearity 

Multicollinearity may occur when two or more x-variables 

that are included simultaneously in the model are strongly 

correlated with each another. 
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Types of diagnostics 

 

Model diagnostics  

1. Scatterplot Check for linearity and outliers. 

Applies to continuous (ratio/interval) x-variables. 

2. Histogram  Check for normality. 

The histogram is based on the residuals, not the actual 

values. 

Applies to both simple and multiple linear regression 

analysis. 

3. Residual plot Check for linearity and homoscedasticity. 

The plot is based on the residuals, not the actual values. 

Applies to both simple and multiple linear regression 

analysis. 

4. Normal 

probability  

plot 

Check for normality. 

Applies to both simple and multiple linear regression 

analysis. 

a. P-P plot Check for normality, based on actual values (better at 

detecting anomalies in the middle of the distribution). 

b. Q-Q plot Check for normality, based on cumulative probabilites 

(better at detecting anomalies at the tails of the 

distribution). 

5. Correlation 

analysis 

Check for multicollinearity. 

Applies to continuous (ratio/interval) and some ordinal x-

variables. 

 

Scatterplots are described elsewhere in this guide (see Section 4.7) and so is 

correlation analysis (Chapter 9). The remainder of the current section will be divided 

into two parts: the first will deal with diagnostics in terms of histograms, residual plots 

and P-P plots, whereas the second deals with Q-Q plots.  
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Histograms, residual plots and P-P plots: Function 

 

 

 

1. Go to the Menu bar, choose Analyze\Regression\Linear.  

2. A new window called Linear Regression will open.   

3. In the left box, all your variables are displayed. You choose the 

variable you want to have as your dependent variable (y) and transfer 

it to the box called Dependent.  

4. Then you choose the variables you want as your independent variables 

(x) and transfer them to the box called Independent(s). 

5. Click on Statistics. 

6. Tick the box for Confidence Intervals. 

7. Click on Plots. 

8. In the left box, click on *ZRESID and transfer it to the box called Y: 

9. In the left box, click on *ZPRED and transfer it to the box called X: 

10. Tick the boxes called Histogram and Normal probability plot. 

11. Click on Continue. 

12. Click on OK to get the results in your Output window.  
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Histograms, residual plots and P-P plots: Syntax 

 

  

 

REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS CI(95) R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN  

  /DEPENDENT DEPVAR 

  /METHOD=ENTER INDEPVARS 

  /SCATTERPLOT=(*ZRESID ,*ZPRED) 

  /RESIDUALS HISTOGRAM(ZRESID) NORMPROB(ZRESID). 

 

 

DEPVAR   Name of the dependent variable. 

 

INDEPVAR   List the names of the independent variables. 

 

/SCATTERPLOT=  Generates a residual plot. 

(*ZRESID ,*ZPRED)  

 

/RESIDUALS    Generates a histogram and a P-P plot. 

HISTOGRAM 

(ZRESID)  

NORMPROB(ZRESID)   
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Histograms, residual plots and P-P plots: Example 

 

  

 

REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS CI(95) R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN  

  /DEPENDENT spoused2sel 

  /METHOD=ENTER gender ed hometype_singlefam hometype_townhouse    

  hometype_mobilehome 

  /SCATTERPLOT=(*ZRESID ,*ZPRED) 

  /RESIDUALS HISTOGRAM(ZRESID) NORMPROB(ZRESID). 

 

 

spoused2sel Spouse’s years of education, only for those with a 

spouse (Min=0; Max=24) 

gender     Gender (0=Man; 1=Woman) 

hometype_singlefam   Building type: single family (0=No; 1=Yes) 

hometype_multiplefam  Building type: multiple family (0=No; 1=Yes) 

Reference category 

hometype_townhouse     Building type: multiple family (0=No; 1=Yes) 

hometype_mobilehome   Building type: mobile home (0=No; 1=Yes) 
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Output/Step 1 

 

The first step is to look at the graph called Histogram. It shows how the residuals are 

distributed. They should follow the normal curve on the diagram. In the present 

example, this histogram looks rather normally distributed. 

 

 

 
 

 

 



 

224 

 

Output/Step 2 

 

The second step is to look at the graph called Normal P-P Plot of Regression 

Standardized Residual. The distribution should follow a diagonal line across the plot 

if the residuals are normally distributed. The P-P plot below looks good; the residuals 

are normally distributed which was already indicated from the histogram. 
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Output/Step 3 

 

The third step is to look at the graph called Scatterplot. The residuals should be equally 

distributed around 0. Systematic patterns usually indicate some problem with the 

model, like curve linearity or heteroscedasticity. Problematic patterns can look like 

cones or curves where the variation in the residuals is not constant over the whole 

range of values. For example, a cone-shaped form on the residual plot has low 

variation in the residuals on low values, and high variation in the residuals on high 

values, or reversed. 
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Q-Q plots: Function 

 

 

 

Step 1 

 

1. Go to the Menu bar, choose Analyze\Regression\Linear.  

2. A new window called Linear Regression will open.   

3. In the left box, all your variables are displayed. You choose the 

variable you want to have as your dependent variable (y) and transfer 

it to the box called Dependent.  

4. Then you choose the variables you want as your independent variables 

(x) and transfer them to the box called Independent(s). 

5. Click on Statistics. 

6. Tick the box for Confidence Intervals. 

7. Click on Save. 

8. Under Residuals, tick the box called Standardized. 

9. Click on Continue. 

10. Click on OK to generate a new variable that consists of the 

standardized residuals from the regression analysis. 

 

Step 2 

 

1. Go to the Menu bar, choose Analyze\Descriptive Statistics\Q-Q Plots.  

2. In the left box, highlight the new variable you just generated, and 

transfer it to the box called Variables:  

3. Click on OK. 
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Q-Q plots: Syntax 

 

  

 

Part 1 

 

REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS CI(95) R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN  

  /DEPENDENT DEPVAR 

  /METHOD=ENTER INDEPVARS 

  /SAVE ZRESID. 

 

Part 2 

 

PPLOT 

  /VARIABLES=VARNAME 

  /NOLOG 

  /NOSTANDARDIZE 

  /TYPE=Q-Q 

  /FRACTION=BLOM 

  /TIES=MEAN 

  /DIST=NORMAL. 

 

 

DEPVAR  Name of the dependent variable. 

 

INDEPVAR  List the names of the independent variables. 

 

/SAVE ZRESID Saves the standardized residuals.  

 

VARNAME  Name of the variable containing the standardized residuals. 
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Q-Q plots: Example 

 

  

 

Part 1 

 

REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS CI(95) R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN  

  /DEPENDENT spoused2sel 

  /METHOD=ENTER gender ed hometype_singlefam hometype_townhouse  

hometype_mobilehome 

  /SAVE ZRESID. 

 

Part 2 

 

PPLOT 

  /VARIABLES=ZRE_1 

  /NOLOG 

  /NOSTANDARDIZE 

  /TYPE=Q-Q 

  /FRACTION=BLOM 

  /TIES=MEAN 

  /DIST=NORMAL. 

 

 

spoused2sel Spouse’s years of education, only for those with a 

spouse (Min=0; Max=24) 

gender     Gender (0=Man; 1=Woman) 

hometype_singlefam   Building type: single family (0=No; 1=Yes) 

hometype_multiplefam  Building type: multiple family (0=No; 1=Yes) 

Reference category 

hometype_townhouse     Building type: multiple family (0=No; 1=Yes) 

hometype_mobilehome   Building type: mobile home (0=No; 1=Yes) 
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Output 

 

Look at the graph called Normal Q-Q Plot of Standardized Residual. If the observed 

values and the expected values coincide completely, the dots would follow the 

diagonal line and the variable tested would then be completely normally distributed. 

This is however very rare and some deviation is always present, but the principle is 

that the closer to the line the dots are the more normally distributed the variable is. 

For example the diagram above show a normally distributed variable, deviation at the 

ends is almost inevitable. It is more problematic if the dots are distributed in a wider 

s-shaped pattern and deviate from the diagonal over the whole range of values. 
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14. LOGISTIC REGRESSION 

Outline 

14.1 Simple logistic regression 

14.2 Multiple logistic regression 

14.3 Model diagnostics 
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Introduction 

 

Logistic regression is used when y is categorical with only two outcomes, i.e. 

dichotomous/binary (see section 2.2). If you have only one x, it is called “simple” 

logistic regression, and if you have more than one x, it is called “multiple” logistic 

regression. Regardless of whether you are doing a simple or a multiple regression, the 

x-variables can be categorical (nominal/ordinal) and/or continuous (ratio/interval). 

 

Key information from logistic regression 

1. Direction  

Negative Odds ratio below 1 

Positive Odds ratio above 1 

2. Effect size  

Odds ratio The odds of the outcome being a case divided by 

the odds that the outcome is a non-case, for every 

one-unit increase in x 

3. Statistical significance  

P-value p<0.05 Statistically significant at the 5 % level 

p<0.01 Statistically significant at the 1 % level 

p<0.001 Statistically significant at the 0.1 % level 

95 % Confidence intervals Interval does not include 1: 

Statistically significant at the 5 % level 

Interval includes 1:  

Statistically non-significant at the 5 % level 
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Odds ratio (OR) 

 

A logistic regression is thus based on the fact that the outcome has only two possible 

values: 0 or 1.  Often, 1 is used to denote a “case” whereas 0 is then a “non-case”. 

What a “case” or “non-case” means depends on how the hypothesis is formulated. 

 

 

Example 1a  

We want to investigate the association between educational attainment (x) and 

employment (y). Our hypothesis is that educational attainment is positively 

associated with employment (i.e. higher educational attainment = more likely to be 

employed). 

Coding of employment: 0=Unemployment (non-case); 1=Employment (case) 

 

Example 1b  

We want to investigate the association between educational attainment (x) and 

unemployment (y). Our hypothesis is that educational attainment is negatively 

associated with unemployment (i.e. higher educational attainment = less likely to 

be unemployed). 

Coding of employment: 0=Employment (non-case); 1=Unemployment (case) 

 

  

Logistic regression is used to predict the “odds” of being a “case” based on the values 

of the x-variable(s). Just as for linear regression analysis, we get a coefficient (log 

odds) that shows the effect of x on y. However, because logistic regression is based 

on other assumptions that linear regression, we cannot interpret these coefficients very 

easily. Instead we focus on something called the “odds ratio” (“OR”). We can get the 

odds ratio by taking the “exponent” of the coefficient: “exp(B)”.  

 

The odds ratio is interpreted in the following way: “for every one-unit increase in x, 

y increases/decreases by [the odds ratio]”. Accordingly, if you get a negative OR 

(below 1), you say: “for every one-unit increase in x, y decreases by [the OR]”, and if 

you get a positive OR (above 1), you say: “for every one-unit increase in x, y increases 

by [the OR]”. Unlike linear regression, where the null value (i.e. value that denotes 

no difference) is 0, the null value for logistic regression is 1. Also note that an OR can 

never be negative – it can range between 0 and infinity. What the OR actually stands 

for – and whether we can say that an effect is small or big – depends on the values of 

x and y.  
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Is the odds ratio the same as risk, probability, chance or likelihood? 

 

The simple answer is no. These terms are not the same (but the more uncommon the 

outcome is, the closer odds ratios and risks become). Still, it is very common that odds 

ratios are interpreted in terms of risks, probabilities, chances or likelihoods. For 

example, suppose we examine the association between unemployment (0=Employed; 

1=Unemployed) and alcohol abuse (0=No; 1=Yes) and we get an OR for 

unemployment that is 2.01. It is very tempting to interpret this as the unemployed 

having twice the risk of alcohol abuse compared to the employed. Or, if we investigate 

the association between school marks (ranges between 10 and 20, higher score=better 

marks) and continuation to university education (0=No; 1=Yes), and get an OR for 

school marks that is 1.20, many would say that the chance of university education 

increases by 20 % for every one-unit increase of school marks.  

 

To avoid all of these problems, here is one suggestion: if you do not have to give any 

exact numbers, then it is all right to say that some individuals have higher or lower 

odds/odds ratio/risk/probability compared to other individuals. However, if you want 

to give exact numbers to exemplify, always use the actual OR. 

 

 

Some examples 

The results suggest that women (OR=0.84) are less likely than men to subscribe to 

a daily newspaper. 

Based on logistic regression analysis, it may be concluded that individuals with 

more behavioural problems in childhood have a greater risk of drug abuse in 

adulthood (OR=1.49). 

There is a negative association between educational attainment and number of 

children: the higher the educational attainment, the lower the number of children 

(OR=0.90). 

Individuals living in urban areas (OR=0.33) are less likely compared to those living 

in rural areas to own a horse. 

 

 

P-values and confidence intervals 

 

In logistic regression analysis you can of course get information about statistical 

significance, in terms of both p-values and confidence intervals. The p-values and the 

confidence intervals will give you partly different information, but: they are not 

contradictory. If the p-value is below 0.05, the 95 % confidence interval will not 
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include 1 (statistical significance at the 5 % level), and if the p-value is above 0.05, 

the 95 % confidence interval will include 1 (statistical non-significance at the 5 % 

level). 

 

Note that when you look at the p-value, you can rather easily distinguish between the 

significance levels (i.e. you can directly say whether you have statistical significance 

at the 5 % level, the 1 % level, or the 0.1 % level). When it comes to confidence 

intervals, SPSS will by default choose 95 % level confidence intervals (i.e. statistical 

significance at the 5 % level). For some analyses, it is however possible to change the 

confidence level for the intervals. For example, you may instruct SPSS to show 99 % 

confidence intervals instead. 

 

R-Squared 

 

In contrast to linear regression, “R-Squared” or “R2” is not very usable (again, 

because of the assumptions behind logistic regression). You will, however, get a value 

for the so-called “Nagelkerke R Square” which is similar to the R-squared. 

 

Simple versus multiple regression models 

 

The difference between simple and multiple regression models, is that in a multiple 

regression each x-variable’s effect on y is estimated while taking into account the 

other x-variables’ effects on y. We then say that these other x-variables are “held 

constant”, or “adjusted for”, or “controlled for”. Because of this, multiple regression 

analysis is a way of dealing with the issue of “confounding” variables, and to some 

extent also “mediating” variables (see Section 11.2). 

 

It is highly advisable to run a simple logistic regression for each of the x-variables 

before including them in a multiple regression. Otherwise, you will not have anything 

to compare the adjusted odds ratios with (i.e. what happened to the OR when other x-

variables were included in the analysis). Including multiple x-variables in the same 

model usually (but not always) means that the associations are reduced in strength – 

which would of course be expected if the x-variables overlapped in their effect on y.      
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Define your analytical sample 

 

Before you begin, make sure that you have defined your analytical sample correctly 

(see Section 12.6).  
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14.1 Simple logistic regression 

 

Quick facts  

Number of variables One dependent (y) 

One independent (x) 

Scale of variable(s) Dependent: binary 

Independent: categorical (nominal/ordinal) or 

continuous (ratio/interval) 

 



 

237 

 

Simple logistic regression: Function 

 

 

 

1. Go to the Menu bar, choose Analyze\Regression\Binary Logistic.  

2. A new window called Logistic Regression will open.   

3. In the left box, all your variables are displayed. You choose the 

variable you want to have as your dependent variable (y) and transfer 

it to the box called Dependent.  

4. Then you choose the variable you want as your independent variable 

(x) and transfer it to the box called Covariates. 

5. Click on Options. 

6. Tick the box for CI for exp(B). 

7. Click on Continue. 

8. Click on OK to get the results in your Output window.  
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Simple logistic regression: Syntax 

 

  

 

LOGISTIC REGRESSION VARIABLES DEPVAR 

  /METHOD=ENTER INDEPVAR  

  /PRINT=CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). 

 

 

DEPVAR  Name of the dependent variable. 

 

INDEPVAR  Name of the independent variable. 
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Simple logistic regression with a continuous x 

 

 

Example 1  

Suppose we want to examine the association between unemployment days (x) and 

mortality (y) by means of a simple logistic regression analysis. Unemployment days 

are measured as the total number of days in unemployment during a year, and 

ranges from 0 to 365. Mortality has the values 0=Alive and 1=Dead. Let us say that 

we get an OR that is 1.67. That would mean that we have a positive association: the 

higher the number of unemployment days, the higher the risk of dying. 

 

 

 

Example 2  

In another example, we may examine the association between intelligence scores 

(x) and drug use (y). Intelligence scores are measured by a series of tests that render 

various amounts of points, and ranges between 20 and 160 points. Drug use has the 

values 0=No and 1=Yes. Here, we get an OR of 0.91. We can thus conclude that 

the risk of using drugs decrease for every one-unit increase in intelligence scores. 
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Simple logistic regression with a continuous x: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

LOGISTIC REGRESSION VARIABLES active 

  /METHOD=ENTER age  

  /PRINT=CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). 

 

 

active    Active lifestyle (0=No; 1=Yes) 

age    Age in years (Min=18; Max=79) 
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Output 

 

Look at the table called Variables in the Equation. The column called Exp(B) shows 

the odds ratio (OR) for the variable age. The OR is 0.972, which means that we have 

a negative association between age and active. In other words, for every one-unit 

increase in age (i.e. one additional lived year), the likelihood of having an active 

lifestyle decreases.  

 

The column called Sig. shows the p-value. Here, the p-value is 0.000 which means 

that the association between age and active is statistically significant (at the 0.1 % 

level). The part of the table called 95 % C.I. for EXP(B) gives us the lower confidence 

limits (Lower) and the upper confidence limits (Upper). The interval does not include 

the null value (which is always x=1 in logistic regression) and, thus, the results are 

statistically significant (at the 5 % level). 
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Simple logistic regression with a binary x 

 

 

Example 1  

Suppose we want to examine the association between gender (x) and alcohol abuse 

(y) by means of a simple logistic regression analysis. Gender has the values 0=Man 

and 1=Woman, whereas alcohol abuse has the values 0=No and 1=Yes. Now, we 

get an OR of 0.66. This would mean that women are less likely to abuse alcohol 

compared to men.   

 

 

 

Example 2  

Here we want to examine the association between having small children (x) and 

owning a pet (y) by means of a simple logistic regression analysis. Having small 

children is measured as either 0=No or 1=Yes. Owning a pet has the values 0=No 

and 1=Yes. Let us say that we get an OR that is 1.49. We can hereby conclude that 

it is more common to own a pet in families with small children compared to families 

without small children. 
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Simple logistic regression with a binary x: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

LOGISTIC REGRESSION VARIABLES marital 

  /METHOD=ENTER active  

  /PRINT=CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). 

 

 

marital    Marital status (0=Unmarried; 1=Married) 

active    Active lifestyle (0=No; 1=Yes) 
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Output 

 

Look at the table called Variables in the Equation. The column called Exp(B) shows 

the odds ratio (OR) for the variable active. The OR is 0.987, which means that we 

have a negative association between active and marital. In other words, those who 

have an active lifestyle are less likely to be married compared to those who do not 

have an active lifestyle.  

 

The column called Sig. shows the p-value. Here, the p-value is 0.823 which means 

that the association between active and marital is not statistically significant. The part 

of the table called 95 % C.I. for EXP(B) gives us the lower confidence limits (Lower) 

and the upper confidence limits (Upper). The interval includes the null value (which 

is always x=1 in logistic regression) and, thus, the results are not statistically 

significant. 
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Simple logistic regression with a categorical x (dummies) 

 

 

Example 1  

We want to investigate the association between educational attainment (x) and 

mortality (y) by means of a simple logistic regression analysis. Educational 

attainment has the values: 1=Compulsory education, 2=Upper secondary 

education, and 3=University education. Mortality has the values 0=No and 1=Yes. 

Since our x-variable is categorical with more than two categories, we have to create 

dummies (one 0/1 coded variable for each category). We choose those with 

compulsory education as our reference category, meaning that this dummy will not 

be included in the analysis. We will thus get one odds ratio for upper secondary 

education and one odds ratio for university education. Each of these should be 

compared to the reference category. Let us say that we get an OR for upper 

secondary education that is 0.82 and we get an OR for university education that is 

0.69. We can thus conclude – based on the direction of the estimates – that higher 

educational attainment is associated with a lower mortality risk.  

 

 

 

Example 2  

Suppose we are interested in the association between family type (x) and children’s 

average school marks (y). Family type has three categories: 1=Two-parent 

household, 2=Joint custody, and 3=Single-parent household. Children’s average 

school marks are categorised into 0=Above average and 1=Below average. Since 

our x-variable is categorical with more than two categories, we have to create 

dummies (one 0/1 coded variable for each category). We choose children living in 

a two-parent household as our reference category, meaning that this dummy will 

not be included in the analysis. We will thus get one odds ratio for joint custody 

and one odds ratio for single-parent household. Each of these should be compared 

to the reference category. The analysis results in an OR of 1.02 for joint custody 

and an OR of 1.55 for single-parent household. That would mean that children 

living in family types other than two-parent households are more likely to have 

school marks below average.  
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Simple logistic regression with a categorical x (dummies): Example 

 

 

 

(Data: SPSS_data1.sav) 

 

LOGISTIC REGRESSION VARIABLES ownpc 

  /METHOD=ENTER edcat_no edcat_somecoll edcat_colldeg edcat_postgrad 

  /PRINT=CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). 

 

 

ownpc    Owns computer (0=No; 1=Yes) 

edcat_no           Did not complete high school  (0=No; 1=Yes) 

edcat_highsc   High school degree  (0=No; 1=Yes) Reference group 

edcat_somecoll  Some college  (0=No; 1=Yes) 

edcat_colldeg  College degree  (0=No; 1=Yes) 

edcat_postgrad  Post-undergraduate degree  (0=No; 1=Yes) 
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Output 

 

Look at the table called Variables in the Equation. The column called Exp(B) shows 

the odds ratios (OR) for the dummies of the variable edcat. The OR is 0.380 for the 

dummy edcat_no (Did not complete high school), 2.253 for edcat_somecoll (Some 

college), 4.864 for edcat_colldeg (College degree), and 8.756 for edcat_postgrad 

(Post-undergraduate degree). This means that those who do not complete high school 

are less likely to own a computer compared to those with a high school degree, 

whereas those who have some college education or more are more likely to own a 

computer compared to those with a high school degree. We can thus see a clear 

positive association between edcat and ownpc: the higher the educational attainment, 

the higher the likelihood of owning a computer.  

 

The column called Sig. shows the p-value. Here, the p-values are 0.000 which means 

that the association between edcat and ownpc is statistically significant (at the 0.1 % 

level). The part of the table called 95 % C.I. for EXP(B) gives us the lower confidence 

limits (Lower) and the upper confidence limits (Upper). The intervals do not include 

the null value (which is always x=1 in logistic regression) and, thus, the results are 

statistically significant (at the 5 % level). 
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14.2 Multiple logistic regression 

 

Quick facts  

Number of variables One dependent (y) 

At least two independent (x) 

Scale of variable(s) Dependent: binary 

Independent: categorical (nominal/ordinal) and/or 

continuous (ratio/interval) 
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Multiple logistic regression: Function 

 

 

 

1. Go to the Menu bar, choose Analyze\Regression\Binary Logistic.  

2. A new window called Logistic Regression will open.   

3. In the left box, all your variables are displayed. You choose the 

variable you want to have as your dependent variable (y) and transfer 

it to the box called Dependent.  

4. Then you choose the variables you want as your independent variables 

(x) and transfer them to the box called Covariates. 

5. Click on Options. 

6. Tick the box for CI for exp(B). 

7. Click on Continue. 

8. Click on OK to get the results in your Output window.  
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Multiple logistic regression: Syntax 

 

  

 

LOGISTIC REGRESSION VARIABLES DEPVAR 

  /METHOD=ENTER INDEPVARS  

  /PRINT=CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). 

 

 

DEPVAR  Name of the dependent variable. 

 

INDEPVARS  List the names of the independent variables. 
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Multiple logistic regression  

 

 

Example  

Suppose we are interested to see if having a pet (y) is related to having small 

children (x), residential area (x), and income (x). Having a pet has the values 0=No 

and 1=Yes.  Having small children is measured as either 0=No or 1=Yes. 

Residential area has the values 1=Metropolitan, 2=Smaller city, and 3=Rural. 

Income is measured as the yearly household income from salary in thousands of 

SEK (ranges between 100 and 700 SEK).  

 

When we do our logistic regression, we can include the variables “having children” 

and “income” as they are, since the first is binary and the other is continuous. The 

remaining variable – residential area – is categorical with more than two values and 

therefore dummies must be used. We create one dummy for each category of 

“residential area”. The first dummy (metropolitan) is chosen as the reference 

category and is thus excluded from the analysis.   

 

In the regression analysis, we get an OR for having small children that is 1.30. That 

means that those who have small children are more likely to also have a pet. This 

association is adjusted for residential area and income. With regards to residential 

area, we get an OR for “smaller city” of 1.78 and the OR for “rural” is 4.03. This 

suggests that those who live in a smaller city are more likely to have a pet, and so 

are those living in rural areas. These results are adjusted for having small children 

and income. Finally, the OR for income is 0.93. This suggests that for every one-

unit increase in income (i.e. for every additional one thousand SEK), the likelihood 

of having a small pet decreases. This association is adjusted for having small 

children and residential area.     
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Multiple logistic regression: Example  

 

 

 

(Data: SPSS_data1.sav) 

 

LOGISTIC REGRESSION VARIABLES active 

  /METHOD=ENTER age marital bfast_oatmeal bfast_cereal 

  /PRINT=CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). 

 

 

active    Active lifestyle (0=No; 1=Yes) 

age    Age in years (Min=18; Max=79) 

marital    Marital status (0=Unmarried; 1=Married) 

bfast_energy  Preferred breakfast: Energy bar (0=No; 1=Yes)  

Reference group 

bfast_oatmeal   Preferred breakfast: Oatmeal (0=No; 1=Yes) 

bfast_cereal   Preferred breakfast: Cereal (0=No; 1=Yes) 
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Output 

 

Look at the table called Variables in the Equation. The column called Exp(B) shows 

the odds ratios (OR) for the variables. The OR is 0.981 for age. This means that for 

every one-unit increase in age (i.e. one additional year of living), the odds of having 

an active lifestyle decreases. This association is adjusted for marital and bfast. The 

OR is 1.153 for marital, meaning that those who are married are more likely to have 

an active lifestyle compared to those who are unmarried. This association is adjusted 

for age and bfast. With regard to bfast, we have included two dummies in the model 

(bfast_energy is the reference category). The OR for bfast_oatmeal is 0.349 and the 

OR for bfast_cereal is 0.362. This means that those who prefer oatmeal or cereal for 

breakfast are less likely to have an active lifestyle compared to those who prefer an 

energy bar. These results are adjusted for age and marital. The column called Sig. 

shows the p-value. Here, the p-value for age and bfast is 0.000 which means that we 

have statistically significant associations with active lifestyle (at the 0.1 % level). The 

p-value for marital is 0.020, suggesting that also marital status has a statistically 

significant association with active lifestyle (at the 5 % level). Remember that all these 

associations are mutually adjusted. The part of the table called 95 % C.I. for EXP(B) 

gives us the lower confidence limits (Lower) and the upper confidence limits (Upper). 

None of the intervals include the null value (which is always x=1 in logistic 

regression) and, thus, the results are statistically significant (at the 5 % level). 
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14.3 Model diagnostics 

 

Goodness of fit 

 

The assumptions behind logistic regression are different from linear regression. For 

example, we do not need to assume linearity, homoscedasticity or normality. 

Multicollinearity should however be avoided (i.e. strong correlations between the x-

variables in multiple logistic regression – check with correlation analysis; see Chapter 

9). Most importantly, the model should fit the data. There are several tests to 

determine “goodness of fit” or, put differently, if the estimated model (i.e. the model 

with one or more x-variables) predicts the outcome better than the null model (i.e. a 

model without any x-variables). Below, some of these tests are discussed: 

classification tables, the Hosmer and Lemeshow test and the ROC curve.  

 

Estimate the goodness of fit 

Classification tables  

The Hosmer and Lemeshow test  

ROC curve 

 

Before going into the specific tests, we need to address the issues of “sensitivity” and 

“specificity”. By comparing the cases and non-cases predicted by the model with the 

cases and non-cases actually present in the outcome, we can draw a conclusion about 

the proportion of correctly predicted cases (sensitivity) and the proportion of correctly 

classified non-cases (specificity).   

 

Sensitivity and specificity 

 Estimated model 

  Non-case Case 

“Truth” 
Non-case True negative False positive 

Case False negative True positive 
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Classification tables 

 

A classification table is similar to the table about sensitivity and specificity, only that 

it is based on the model that you run, and thus gives you the frequency of true 

negatives, false positives, false negatives, and true positives, as well as the overall 

percentages of cases and non-cases that are correctly predicted by the estimated 

model. Note that a classification table is automatically produced by SPSS and appears 

in the standard output. 

The Hosmer and Lemeshow test 

 

This test is a type of a chi-square test. It indicates the extent to which the estimated 

model provides a better fit to the data (i.e. better predictive power) than the null model. 

The test will produce a p-value: if the p-value is above 0.05 (statistically non-

significant) the estimated model has adequate fit, and if the p-value is below 0.05 

(statistically significant) the estimated model does not adequately fit the data.  

 

ROC curve 

 

The ROC curve is a graph that shows how well the estimated model predicts cases 

(sensitivity) and non-cases (specificity). What we are interested in here is the “area 

under the curve” (AUC). The AUC ranges between 0.5 and 1.0. The nearer the AUC 

is to 1, the better the predictive power. On the other hand, a value of 0.5 suggests that 

we may just flip a coin to decide on whether the outcome is a case or non-case. Here 

are some commonly used cut-off points when it comes to AUC: 

 

Area under the curve (AUC) 

0.5-0.6 Fail 

0.6-0.7 Poor 

0.7-0.8 Fair 

0.8-0.9 Good 

0.9-1.0 Excellent 
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Some remarks on model fit 

 

A general comment about model fit: if the main interest was to identify the best model 

to predict a certain outcome, that would solely guide which x-variables we put into 

the analysis. For example, we would exclude x-variables that do not contribute to the 

model’s predictive ability. However, research is often guided by theory and by the 

interest of examining associations between variables. If we thus have good theoretical 

reasons for keeping a certain x-variable or sticking to a certain model, we should most 

likely do that (but still, the model should not fit the data horribly). Model diagnostics 

will then be a way of showing others the potential problems with the model we use.  
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Classification tables: Function 

 

 

 

1. Go to the Menu bar, choose Analyze\Regression\Binary Logistic.  

2. A new window called Logistic Regression will open.   

3. In the left box, all your variables are displayed. You choose the 

variable you want to have as your dependent variable (y) and transfer 

it to the box called Dependent.  

4. Then you choose the variables you want as your independent variables 

(x) and transfer them to the box called Covariates. 

5. Click on Options. 

6. Tick the box for CI for exp(B). 

7. Click on Continue. 

8. Click on OK to get the results in your Output window.  

 



 

258 

 

Classification tables: Syntax 

 

  

 

LOGISTIC REGRESSION VARIABLES DEPVAR 

  /METHOD=ENTER INDEPVARS  

  /PRINT=CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). 

 

 

DEPVAR  Name of the dependent variable. 

 

INDEPVARS  List the names of the independent variables. 
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Classification tables: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

LOGISTIC REGRESSION VARIABLES active 

  /METHOD=ENTER age marital bfast_oatmeal bfast_cereal 

  /PRINT=CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). 

 

 

active    Active lifestyle (0=No; 1=Yes) 

age    Age in years (Min=18; Max=79) 

marital    Marital status (0=Unmarried; 1=Married) 

bfast_energy  Preferred breakfast: Energy bar (0=No; 1=Yes)  

Reference group 

bfast_oatmeal   Preferred breakfast: Oatmeal (0=No; 1=Yes) 

bfast_cereal   Preferred breakfast: Cereal (0=No; 1=Yes) 
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Output/Step 1 

 

Look at the table called Classification Table (note: not the first but the second one; 

below Block 1: Method = Enter). The combination No+No (n=2053) contains the true 

negative, the combination No+Yes (n=612) contains the false positive, the 

combination Yes+No (n=1134) contains the false negative, and the combination 

Yes+Yes (n=1201) contains the true positive. The overall percentage of cases and 

non-cases that is correctly classified by the estimated model is 65.1 %. 

 

 

 
 

 

Output/Step 2 

 

The next step is to look at the other table called Classification Table (note: not the 

second but the first one; below Block 0: Method = Enter). The overall percentage of 

cases and non-cases that is correctly classified by the null model is 53.3 %. In other 

words, the estimated model did a better job of predicting the outcome than the null 

model. 
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The Hosmer and Lemeshow test: Function 

 

 

 

1. Go to the Menu bar, choose Analyze\Regression\Binary Logistic.  

2. A new window called Logistic Regression will open.   

3. In the left box, all your variables are displayed. You choose the 

variable you want to have as your dependent variable (y) and transfer 

it to the box called Dependent.  

4. Then you choose the variables you want as your independent variables 

(x) and transfer them to the box called Covariates. 

5. Click on Options. 

6. Tick the box for CI for exp(B). 

7. Click on Continue. 

8. Click on OK to get the results in your Output window.  
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The Hosmer and Lemeshow test: Syntax 

 

  

 

LOGISTIC REGRESSION VARIABLES DEPVAR 

  /METHOD=ENTER INDEPVARS  

  /PRINT=GOODFIT CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). 

 

 

DEPVAR  Name of the dependent variable. 

 

INDEPVARS  List the names of the independent variables. 

 

GOODFIT   Include the Hosmer-Lemeshow goodness-of-fit test 
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The Hosmer and Lemeshow test: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

LOGISTIC REGRESSION VARIABLES active 

  /METHOD=ENTER age marital bfast_oatmeal bfast_cereal 

  /PRINT=GOODFIT CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). 

 

 

active    Active lifestyle (0=No; 1=Yes) 

age    Age in years (Min=18; Max=79) 

marital    Marital status (0=Unmarried; 1=Married) 

bfast_energy  Preferred breakfast: Energy bar (0=No; 1=Yes)  

Reference group 

bfast_oatmeal   Preferred breakfast: Oatmeal (0=No; 1=Yes) 

bfast_cereal   Preferred breakfast: Cereal (0=No; 1=Yes) 
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Output 

 

Look at the table called Hosmer and Lemeshow test. The column that is labelled Sig. 

shows the p-value for the test. If the p-value is above 0.05 (statistically non-

significant) the estimated model has adequate fit, and if the p-value is below 0.05 

(statistically significant) the estimated more does not adequately fit the data. In the 

current example, we have a p-value of 0.130. This suggests that the estimated model 

has adequate fit.  
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ROC curve: Function 

 

 

 

Step 1 

 

1. Go to the Menu bar, choose Analyze\Regression\Binary Logistic.  

2. A new window called Logistic Regression will open.   

3. In the left box, all your variables are displayed. You choose the 

variable you want to have as your dependent variable (y) and transfer 

it to the box called Dependent.  

4. Then you choose the variables you want as your independent variables 

(x) and transfer them to the box called Covariates. 

5. Click on Save. 

6. Tick the box for Probabilities.  

7. Click on Continue. 

8. Click on OK to generate a new variable that contains the predicted 

probabilities.  

 

Step 2 

 

1. Go to the Menu bar, choose Analyze\ROC Curve.  

2. A new window called ROC Curve will open.   

3. In the left box, all your variables are displayed. You choose the 

variable you just generated (the one with the predicted probabilities) 

and transfer it to the box called Test Variable.  

4. Choose your dependent variable (y) and transfer it to the box called 

State Variable.  

5. In the box called Value of State Variable, write the value that signifies 

a case (commonly a non-case has the value 0 and a case has the value 

1; then write 1).  

6. Tick the box called With diagonal reference line.  

7. Click on OK to get the results in your Output window.  
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ROC curve: Syntax 

 

  

 

Step 1 

 

LOGISTIC REGRESSION VARIABLES DEPVAR 

  /METHOD=ENTER INDEPVARS  

  /SAVE=PRED 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). 

 

Step 2 

 

ROC PRED BY DEPVAR (CASEVALUE) 

  /PLOT=CURVE(REFERENCE) 

  /CRITERIA=CUTOFF(INCLUDE) TESTPOS(LARGE) 

DISTRIBUTION(FREE) CI(95) 

  /MISSING=EXCLUDE. 

 

 

DEPVAR  Name of the dependent variable. 

 

INDEPVARS  List the names of the independent variables. 

 

/SAVE=PRED Generate a new variable containing the predicted 

probabilities 

 

PRED   Name of the variable containing the predicted probabilities 

 

(CASEVALUE) The value of the dependent variable that signifies a “case”  
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ROC curve: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

Part 1 

 

LOGISTIC REGRESSION VARIABLES active 

  /METHOD=ENTER age marital bfast_oatmeal bfast_cereal  

  /SAVE=PRED 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). 

 

Part 2 

 

ROC PRE_1 BY active (1) 

  /PLOT=CURVE(REFERENCE) 

  /CRITERIA=CUTOFF(INCLUDE) TESTPOS(LARGE) 

DISTRIBUTION(FREE) CI(95) 

  /MISSING=EXCLUDE. 

 

 

active    Active lifestyle (0=No; 1=Yes) 

age    Age in years (Min=18; Max=79) 

marital    Marital status (0=Unmarried; 1=Married) 

bfast_energy   Preferred breakfast: Energy bar (0=No; 1=Yes)  

Reference group 

bfast_oatmeal   Preferred breakfast: Oatmeal (0=No; 1=Yes) 

bfast_cereal   Preferred breakfast: Cereal (0=No; 1=Yes) 

PRE_1   Predicted probabilities
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Output/Step 1 

 

Look at the graph called ROC Curve. The closer to the upper left corner the curve is, 

the better the predictions are. If the curve follow the corner perfectly all predictions 

are correct, if the line follow the diagonal line we could just as well flip a coin.  
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Output/Step 2 

 

Look at the table called Area Under the Curve. The AUC ranges between 0.5 and 1.0. 

The nearer the AUC is to 1, the better the predictive power. On the other hand, a value 

of 0.5 suggests that we may just flip a coin to decide on whether the outcome is a case 

or non-case. A value of 0.681, as we have here, suggests rather poor predictive power.  
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15. ORDINAL REGRESSION 

 

Outline 

15.1 Simple ordinal regression 

15.2 Multiple ordinal regression 

15.3 Model diagnostics 
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Introduction 

 

Ordinal regression is used when y is ordinal (see section 2.2). If you have only one x, 

it is called “simple” ordinal regression, and if you have more than one x, it is called 

“multiple” ordinal regression. Regardless of whether you are doing a simple or a 

multiple regression, the x-variables can be categorical (nominal/ordinal) and/or 

continuous (ratio/interval). 

 

Key information from ordinal regression 

1. Direction  

Negative Odds ratio below 1 

Positive Odds ratio above 1 

2. Effect size  

Odds ratio The odds of the outcome being lower or higher, 

for every one-unit increase in x 

3. Statistical significance  

P-value p<0.05 Statistically significant at the 5 % level 

p<0.01 Statistically significant at the 1 % level 

p<0.001 Statistically significant at the 0.1 % level 

95 % Confidence intervals Interval does not include 1: 

Statistically significant at the 5 % level 

Interval includes 1:  

Statistically non-significant at the 5 % level 
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Odds ratios (OR) 

 

An ordinal regression is thus based on the fact that the outcome consists of three or 

more categories that are possible to rank (i.e. ordered categories): 

 

 

Some examples 

Educational attainment (1=Compulsory; 2=Upper secondary; 3=University) 

School marks (1=Low; 2=Average; 3=High) 

Self-rated health (1=Excellent; 2=Good; 3=Fair; 4=Poor) 

Statement: “Eurovision Song Contest is entertaining” (1=Strongly agree; 2=Agree; 

3=Neither agree nor disagree; 4=Disagree; 5=Strongly disagree) 

 

 

Ordinal regression is used to predict the “odds” of having a lower or a higher value 

for your dependent variable (y), based on the values of the x-variable(s). Just as for 

linear regression analysis, we get a coefficient (log odds) that shows the effect of x on 

y. However, because ordinal regression is based on other assumptions that linear 

regression, we cannot interpret these coefficients very easily. Instead we focus on 

something called the “odds ratio” (“OR”). We can get the odds ratio by taking the 

“exponent” of the coefficient: “exp(B)”.  

 

The OR is interpreted in the following way: “for every one-unit increase in x, y 

increases/decreases by [the OR]”. Accordingly, if you get a negative OR (below 1), 

you say: “for every one-unit increase in x, y decreases by [the OR]”, and if you get a 

positive OR (above 1), you say: “for every one-unit increase in x, y increases by [the 

OR]”. Unlike linear regression, where the null value (i.e. value that denotes no 

difference) is 0, the null value for ordinal regression is 1. Also note that an OR can 

never be negative – it can range between 0 and infinity. What the OR actually stands 

for – and whether we can say that an effect is small or big – depends on the values of 

x and y.  

 

Is the odds ratio the same as risk, probability, chance or likelihood? 

 

The simple answer is no. These terms are not the same (but the more uncommon the 

outcome is, the closer odds ratios and risks become). Still, it is very common that odds 

ratios are interpreted in terms of risks, probabilities, chances or likelihoods. For 

example, suppose we examine the association between unemployment (0=Employed; 

1=Unemployed) and alcohol consumption (1=None; 2=Moderate; 3=Excessive) and 



 

273 

 

we get an OR for unemployment that is 1.36. It is very tempting to interpret this as 

the unemployed having 36 % higher risk of drinking more alcohol compared to the 

employed. Or, if we investigate the association between school marks (ranges between 

10 and 20, higher score=better marks) and educational attainment (1=Low; 

2=Medium; 3=High), and get an OR for school marks that is 1.09, many would say 

that the chance of higher educational attainment increases by 9 % for every one-unit 

increase of school marks.  

 

To avoid all of these problems, here is one suggestion: if you do not have to give any 

exact numbers, then it is all right to say that some individuals have higher or lower 

odds/odds ratio/risk/probability compared to other individuals. However, if you want 

to give exact numbers to exemplify, always use the actual OR. 

 

P-values and confidence intervals 

 

In ordinal regression analysis you can of course get information about statistical 

significance, in terms of both p-values and confidence intervals. The p-values and the 

confidence intervals will give you partly different information, but: they are not 

contradictory. If the p-value is below 0.05, the 95 % confidence interval will not 

include 1 (statistical significance at the 5 % level), and if the p-value is above 0.05, 

the 95 % confidence interval will include 1 (statistical non-significance at the 5 % 

level). 

 

Note that when you look at the p-value, you can rather easily distinguish between the 

significance levels (i.e. you can directly say whether you have statistical significance 

at the 5 % level, the 1 % level, or the 0.1 % level). When it comes to confidence 

intervals, SPSS will by default choose 95 % level confidence intervals (i.e. statistical 

significance at the 5 % level). For some analyses, it is however possible to change the 

confidence level for the intervals. For example, you may instruct SPSS to show 99 % 

confidence intervals instead. 

 

R-Squared 

 

In contrast to linear regression, “R-Squared” or “R2” is not very usable (again, 

because of the assumptions behind ordinal regression). You will, however, get a value 

for the so-called “Nagelkerke R Square” which is similar to the R-squared. 
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Simple versus multiple regression models 

 

The difference between simple and multiple regression models, is that in a multiple 

regression each x-variable’s effect on y is estimated while taking into account the 

other x-variables’ effects on y. We then say that these other x-variables are “held 

constant”, or “adjusted for”, or “controlled for”. Because of this, multiple regression 

analysis is a way of dealing with the issue of “confounding” variables, and to some 

extent also “mediating” variables (see Section 11.2). 

 

It is highly advisable to run a simple ordinal regression for each of the x-variables 

before including them in a multiple regression. Otherwise, you will not have anything 

to compare the adjusted odds ratios with (i.e. what happened to the OR when other x-

variables were included in the analysis). Including multiple x-variables in the same 

model usually (but not always) means that the associations are reduced in strength – 

which would of course be expected if the x-variables overlapped in their effect on y.      

 

Define your analytical sample 

 

Before you begin, make sure that you have defined your analytical sample correctly 

(see Section 12.6).  
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15.1 Simple ordinal regression 

 

Quick facts  

Number of variables One dependent (y) 

One independent (x) 

Scale of variable(s) Dependent: ordinal 

Independent: categorical (nominal/ordinal) or 

continuous (ratio/interval) 
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Simple ordinal regression: Function 

 

 

 

Part 1 

 

1. Go to the Menu bar, choose Analyze\Regression\Ordinal.  

2. A new window called Ordinal Regression will open.   

3. In the left box, all your variables are displayed. You choose the 

variable you want to have as your dependent variable (y) and transfer 

it to the box called Dependent.  

4. Then you choose the variable you want as your independent variable 

(x). If it is categorical (i.e. nominal/ordinal with more than two 

values), you transfer it to the box called Factor(s) and if it is 

continuous (i.e. ratio/interval) or binary, you transfer it to the box 

called Covariate(s). 

5. Click on OK to get the results in your Output window.  

 

Part 2 

 

As of SPSS v.15, you will not get odds ratios directly in your output – you 

will only something called Estimate (which is the log odds). An easy solution 

is to calculate the odds ratios as well as the 95 % confidence intervals in 

Excel, based on the Estimate (log odds) and Std. Error (standard error) you 

get from SPSS.  

 

 

 



 

277 

 

Simple ordinal regression: Syntax 

 

  

 

Part 1 

 

PLUM DEPVAR BY INDEPVAR1 WITH INDEPVAR2 

  /CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) 

MXSTEP(5) PCONVERGE(1.0E-6) SINGULAR(1.0E-8) 

  /LINK=LOGIT 

  /PRINT=FIT PARAMETER SUMMARY.  

 

Part 2 

 

Do the following in Excel based on the output you get from SPSS: 

 

1. Open Excel 

2. To get the OR, write in one cell: 

=EXP(Estimate) 

3. To get the lower end of the confidence interval, write in one cell:  

=EXP(Estimate-1,96*Std. Error) 

4. To get the lower end of the confidence interval, write in one cell:  

=EXP(Estimate+1,96*Std. Error) 

 

 

DEPVAR   Name of the dependent variable. 

 

BY INDEPVAR1 Name of the categorical (i.e. nominal/ordinal with 

more than two categories) independent variable.* 

or 

WITH INDEPVAR2 Name of the binary or continous independent 

variable. 

 

* If you make dummies of your categorical variable, you include them as 

INDEPVAR2 instead. 
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Simple ordinal regression with a continuous x 

 

 

Example 1  

Suppose we want to examine the association between unemployment days (x) and 

self-rated health (y) by means of a simple ordinal regression analysis. 

Unemployment days are measured as the total number of days in unemployment 

during a year, and ranges from 0 to 365. Self-rated health has the values 1=Poor; 

2=Fair; and 3=Good. Let us say that we get an OR that is 0.93. That would mean 

that we have a negative association: the higher the number of unemployment days, 

the lower the odds (or likelihood) of having good health. 

 

 

 

Example 2  

In another example, we may examine the association between intelligence scores 

(x) and the amount of books read per month (y). Intelligence scores are measured 

by a series of tests that render various amounts of points, and ranges between 20 

and 160 points. Book reading has the values 1=0 books; 2=1-3 books; and 3=4 or 

more books. Here, we get an OR of 1.81. We can thus conclude that higher 

intelligence scores are associated with more reading of books. 
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Simple ordinal regression with a continuous x: Example 

 

 

 

(Data: SPSS_data2.sav) 

 

PLUM health WITH income 

  /CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) 

MXSTEP(5) PCONVERGE(1.0E-6) SINGULAR(1.0E-8) 

  /LINK=LOGIT 

  /PRINT=FIT PARAMETER SUMMARY. 

 

 

health   Self-rated health (1=Very good; 2=Good; 3=Fair; 4=Poor) 

income   Income scale 1 (Lowest step) to 10 (Highest step) 
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Output 

 

Look at the table called Parameter Estimates. The column called Estimate shows the 

coefficient for the variable income. Note that these coefficients are the log relative 

risks, and thus the null value is 0 (like in linear regression). The coefficient is -0.205, 

which means that we have a negative association between income and health. In other 

words, for every one-unit increase in income (i.e. moving from one income step to a 

higher), the risk of poor health decreases. The column called Sig. shows the p-value. 

Here, the p-value is 0.000 which means that the association between income and 

health is statistically significant (at the 0.1 % level). 

 

 

 

 

If we want to calculate the OR and the 95 % confidence intervals related to this OR, 

we do the following in Excel: 

 

1. To get the OR, write in one cell: 

=EXP(-0,205) 

2. To get the lower end of the confidence interval, write in one cell:  

=EXP(-0,205-1,96*0,004) 

3. To get the lower end of the confidence interval, write in one cell:  

=EXP(-0,205+1,96*0,004) 

 

This gives us the OR=0.81 and the 95 % CI=0.81-0.82. This confirms what the 

Estimate already told us. The interval does not include the null value (which is always 

x=1 in ordinal regression) and, thus, the results are statistically significant (at the 5 % 

level). 
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Simple ordinal regression with a binary x 

 

 

Example 1  

Suppose we want to examine the association between gender (x) and educational 

attainment (y) by means of a simple ordinal regression analysis. Gender has the 

values 0=Man and 1=Woman, whereas educational attainment has the values 

1=Low, 2=Medium, and 3=High. Now, we get an OR of 1.62. This would mean 

that women have higher educational attainment compared to men. 

 

 

 

Example 2  

Here we want to examine the association between having small children (x) and 

number of pets (y) by means of a simple ordinal regression analysis. Having small 

children is measured as either 0=No or 1=Yes. Number of pets has the values 1=No 

pet, 2=1-2 pets, and 3=3 or more pets. Let us say that we get an OR that is 1.29. 

We can hereby conclude that families with small children own more pets than 

families without small children. 
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Simple ordinal regression with a binary x: Example 

 

 

 

(Data: SPSS_data2.sav) 

 

PLUM health WITH gender 

  /CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) 

MXSTEP(5) PCONVERGE(1.0E-6) SINGULAR(1.0E-8) 

  /LINK=LOGIT 

  /PRINT=FIT PARAMETER SUMMARY. 

 

 

health   Self-rated health (1=Very good; 2=Good; 3=Fair; 4=Poor) 

gender   Gender (0=Man; 1=Woman) 
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Output 

 

Look at the table called Parameter Estimates. The column called Estimate shows the 

coefficient for the variable gender. Note that these coefficients are the log relative 

risks, and thus the null value is 0 (like in linear regression). The coefficient is 0.185, 

which means that we have a positive association between gender and health. In other 

words, for every one-unit increase in gender (i.e. moving from man to woman), the 

risk of poor health increases. The column called Sig. shows the p-value. Here, the p-

value is 0.000 which means that the association between gender and health is 

statistically significant (at the 0.1 % level). 

 

 

 

 

If we want to calculate the OR and the 95 % confidence intervals related to this OR, 

we do the following in Excel: 

 

1. To get the OR, write in one cell: 

=EXP(0,185) 

2. To get the lower end of the confidence interval, write in one cell:  

=EXP(0,185-1,96*0,015) 

3. To get the lower end of the confidence interval, write in one cell:  

=EXP(0,185+1,96*0,015) 

 

This gives us the OR=1.20 and the 95 % CI=1.17-1.24. This confirms what the 

Estimate already told us. The interval does not include the null value (which is always 

x=1 in ordinal regression) and, thus, the results are statistically significant (at the 5 % 

level). 
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Simple ordinal regression with a categorical x (dummies) 

 

 

Example 1  

We want to investigate the association between educational attainment (x) and 

happiness (y) by means of a simple ordinal regression analysis. Educational 

attainment has the values: 1=Compulsory education, 2=Upper secondary 

education, and 3=University education. Happiness has the values 1=Happy, 

2=Neither happy not unhappy; 3=Unhappy. Since our x-variable is categorical with 

more than two categories, we have to create dummies (one 0/1 coded variable for 

each category). We choose those with compulsory education as our reference 

category, meaning that this dummy will not be included in the analysis. We will 

thus get one OR for upper secondary education and one OR for university 

education. Each of these should be compared to the reference category. Let us say 

that we get an OR for upper secondary education that is 0.87 and we get an OR for 

university education that is 0.66. We can thus conclude that higher educational 

attainment is associated with less unhappiness (or more happiness). 

 

 

 

Example 2  

Suppose we are interested in the association between family type (x) and adolescent 

smoking (y). Family type has three categories: 1=Two-parent household, 2=Joint 

custody, and 3=Single-parent household. Adolescent smoking has the values 1=No, 

2=Occasionally, and 3=Frequently. Since our x-variable is categorical with more 

than two categories, we have to create dummies (one 0/1 coded variable for each 

category). We choose adolescents living in a two-parent household as our reference 

category, meaning that this dummy will not be included in the analysis. We will 

thus get one OR for joint custody and one OR for single-parent household. Each of 

these should be compared to the reference category. The analysis results in an OR 

of 1.33 for joint custody and an OR of 3.01 for single-parent household. That would 

mean that adolescents living in family types other than two-parent households 

smoke more.  
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Simple ordinal regression with a categorical x (dummies): Example 

 

 

 

(Data: SPSS_data2.sav) 

 

PLUM health WITH age_3cat_younger age_3cat_older 

  /CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) 

MXSTEP(5) PCONVERGE(1.0E-6) SINGULAR(1.0E-8) 

  /LINK=LOGIT 

  /PRINT=FIT PARAMETER SUMMARY. 

 

 

health    Self-rated health (1=Very good; 2=Good; 3=Fair; 4=Poor) 

age_3cat_younger Age intervals: 15-29 (0=No; 1=Yes) 

age_3cat_middle Age intervals: 30-49 (0=No; 1=Yes) Reference category 

age_3cat_older  Age intervals: 50-98 (0=No; 1=Yes) 
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Output 

 

Look at the table called Parameter Estimates. The column called Estimate shows the 

coefficients for the dummies of the variable age_3cat. Note that these coefficients are 

the log relative risks, and thus the null value is 0 (like in linear regression). The 

coefficient for age_3cat_younger is -0.368 and the coefficient for age_3cat_older is 

0.807. This suggests that we have an overall positive association between age_3cat 

and health: the older the age, the greater the risk of ill-health (or, to be more exact, 

that the younger individuals have better health compared to the reference category and 

that the older individuals have worse health compared to the reference category). The 

column called Sig. shows the p-values. Here, both p-values are 0.000 which means 

that the association between age_3cat and health is statistically significant (at the 0.1 

% level). 

 

 

 

 

If we want to calculate the OR and the 95 % confidence intervals related to this OR, 

we do the following in Excel: 

 

1. To get the OR for age_3cat_younger, write in one cell: 

=EXP(-0,368) 

2. To get the lower end of the confidence interval, write in one cell:  

=EXP(-0,368-1,96*0,018) 

3. To get the lower end of the confidence interval, write in one cell:  

=EXP(-0,368+1,96*0,018) 

4. To get the OR for age_3cat_older, write in one cell: 

=EXP(0,807) 

5. To get the lower end of the confidence interval, write in one cell:  

=EXP(0,807-1,96*0,018) 

6. To get the lower end of the confidence interval, write in one cell:  

=EXP(0,807+1,96*0,018) 
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For age_3cat_younger, this gives us the OR=0.69 and the 95 % CI=0.67-0.72. For 

age_3cat_older, we get the OR=2.24 and the 95 % CI=2.16-2.32. All of this confirms 

what the Estimate already told us. The intervals do not include the null value (which 

is always x=1 in ordinal regression) and, thus, the results are statistically significant 

(at the 5 % level). 
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15.2 Multiple ordinal regression 

 

Quick facts  

Number of variables One dependent (y) 

At least two independent (x) 

Scale of variable(s) Dependent: ordinal 

Independent: categorical (nominal/ordinal) or 

continuous (ratio/interval) 
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Multiple ordinal regression: Function 

 

 

 

Part 1 

 

1. Go to the Menu bar, choose Analyze\Regression\Ordinal.  

2. A new window called Ordinal Regression will open.   

3. In the left box, all your variables are displayed. You choose the 

variable you want to have as your dependent variable (y) and transfer 

it to the box called Dependent.  

4. Then you choose the variables you want as your independent 

variables (x). If they are categorical (i.e. nominal/ordinal with more 

than two values), you transfer them to the box called Factor(s) and 

they are continuous (i.e. ratio/interval) or binary, you transfer them 

to the box called Covariate(s). It is possible to include variables of 

both types at the same time. 

5. Click on OK to get the results in your Output window.  

 

Part 2 

 

As of SPSS v.15, you will not get odds ratios directly in your output – you 

will only something called Estimate (which is the log odds). An easy solution 

is to calculate the odds ratios as well as the 95 % confidence intervals in 

Excel, based on the Estimate (log odds) and Std. Error (standard error) you 

get from SPSS.  
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Multiple ordinal regression: Syntax 

 

  

 

Part 1 

 

PLUM DEPVAR BY INDEPVARS1 WITH INDEPVARS2 

  /CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) 

MXSTEP(5) PCONVERGE(1.0E- 6) SINGULAR(1.0E-8) 

  /LINK=LOGIT 

  /PRINT=FIT PARAMETER SUMMARY.  

 

Part 2 

 

Do the following in Excel based on the output you get from SPSS: 

 

5. Open Excel 

6. To get the OR, write in one cell: 

=EXP(Estimate) 

7. To get the lower end of the confidence interval, write in one cell:  

=EXP(Estimate-1,96*Std. Error) 

8. To get the lower end of the confidence interval, write in one cell:  

=EXP(Estimate+1,96*Std. Error) 

 

 

DEPVAR   Name of the dependent variable. 

 

BY INDEPVARS1 List the names of the categorical (i.e. 

nominal/ordinal with more than two categories) 

independent variables.* 

or 

WITH INDEPVARS2 List the names of the binary or continous 

independent variables. 

 

* If you make dummies of your categorical variables, you include them as 

INDEPVAR2 instead. 
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Multiple ordinal regression  

 

 

Example  

Suppose we are interested to see if alcohol consumption (y) is related to having 

small children (x), residential area (x), and income (x). Alcohol consumption has 

the values 1=None/low, 2=Medium, 3=High.  Having small children is measured 

as either 0=No or 1=Yes. Residential area has the values 1=Metropolitan, 

2=Smaller city, and 3=Rural. Income is measured as the yearly household income 

from salary in thousands of SEK (ranges between 100 and 700 SEK).  

 

When we do our ordinal regression, we can include the variables “having children” 

and “income” as they are, since the first is binary and the other is continuous. The 

remaining variable – residential area – is categorical with more than two values and 

therefore dummies must be used. We create one dummy for each category of 

“residential area”. The first dummy (metropolitan) is chosen as the reference 

category and is thus excluded from the analysis.   

 

In the regression analysis, we get an OR for having small children that is 0.65. That 

means that those who have small children drink less alcohol. This association is 

adjusted for residential area and income. With regards to residential area, we get an 

OR for “smaller city” of 1.32 and the OR for “rural” is 2.44. This suggests that 

those who live in a smaller city drink more alcohol, and so do those living in rural 

areas. These results are adjusted for having small children and income. Finally, the 

OR for income is 0.95. This suggests that for every one-unit increase in income (i.e. 

for every additional one thousand SEK), the consumption of alcohol decreases. 

This association is adjusted for having small children and residential area.     
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Multiple ordinal regression: Example  

 

 

 

(Data: SPSS_data2.sav) 

 

PLUM health WITH income gender age_3cat_younger age_3cat_older 

  /CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) 

MXSTEP(5) PCONVERGE(1.0E-6) SINGULAR(1.0E-8) 

  /LINK=LOGIT 

  /PRINT=FIT PARAMETER SUMMARY. 

 

 

health    Self-rated health (1=Very good; 2=Good; 3=Fair; 4=Poor) 

income    Income scale 1 (Lowest step) to 10 (Highest step) 

gender    Gender (0=Man; 1=Woman) 

age_3cat_younger Age intervals: 15-29 (0=No; 1=Yes) 

age_3cat_middle Age intervals: 30-49 (0=No; 1=Yes) Reference category 

age_3cat_older  Age intervals: 50-98 (0=No; 1=Yes) 
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Output 

 

Look at the table called Parameter Estimates. The column called Estimate shows the 

coefficients for the independent variables. Note that these coefficients are the log 

relative risks, and thus the null value is 0 (like in linear regression). The coefficient 

for income is -0.195, which means that we have a negative association between 

income and health. In other words, for every one-unit increase in income (i.e. moving 

from one income step to a higher), the risk of poor health decreases. This association 

is adjusted for gender and age_3cat. The coefficient for gender is 0.187, which means 

that we have a positive association between gender and health. In other words, for 

every one-unit increase in gender (i.e. moving from man to woman), the risk of poor 

health increases. This association is adjusted for income and age_3cat. Then we have 

the dummies for age_3cat: the coefficient for age_3cat_younger is -0.371 and the 

coefficient for age_3cat_older is 0.757. This suggests that we have an overall positive 

association between age_3cat and health: the older the age, the greater the risk of ill-

health (or, to be more exact, that the younger individuals have better health compared 

to the reference category and that the older individuals have worse health compared 

to the reference category). This association is adjusted for income and gender. 

 

The column called Sig. shows the p-values. Here, all the p-values are 0.000 which 

means that the mutually adjusted associations analyzed here are statistically 

significant (at the 0.1 % level). 

 

 

 
 

 

If we want to calculate the odds ratios and the 95 % confidence intervals related to 

these odds ratios, we do the following in Excel: 

 

1. To get the OR for income, write in one cell: 

=EXP(-0,195) 
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2. To get the lower end of the confidence interval, write in one cell:  

=EXP(-0,195-1,96*0,004) 

3. To get the lower end of the confidence interval, write in one cell:  

=EXP(-0,195+1,96*0,004) 

4. To get the OR for gender, write in one cell: 

=EXP(0,187) 

5. To get the lower end of the confidence interval, write in one cell:  

=EXP(0,187-1,96*0,016) 

6. To get the lower end of the confidence interval, write in one cell:  

=EXP(0,187+1,96*0,016) 

7. To get the OR for age_3cat_younger, write in one cell: 

=EXP(-0,371) 

8. To get the lower end of the confidence interval, write in one cell:  

=EXP(-0,371-1,96*0,019) 

9. To get the lower end of the confidence interval, write in one cell:  

=EXP(-0,371+1,96*0,019) 

10. To get the OR for age_3cat_older, write in one cell: 

=EXP(0,757) 

11. To get the lower end of the confidence interval, write in one cell:  

=EXP(0,757-1,96*0,019) 

12. To get the lower end of the confidence interval, write in one cell:  

=EXP(0,757+1,96*0,019) 

 

These are the results: 

income: OR=0.82, 95 % CI=0.82-0.83 

gender: OR=1.21, 95 % CI=1.17-1.24 

age_3cat_younger: OR=0.69, 95 % CI=0.66-0.72 

age_3cat_older: OR=2.13, 95 % CI=2.05-2.21 

 

All of this confirms what the Estimates already told us. The intervals do not include 

the null value (which is always x=1 in ordinal regression) and, thus, the results are 

statistically significant (at the 5 % level). 
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15.3 Model diagnostics 

 

Parallel lines 

 

The assumptions behind ordinal regression are different from linear regression. For 

example, we do not need to assume linearity, homoscedasticity or normality. 

Multicollinearity should however be avoided (i.e. strong correlations between the x-

variables in multiple ordinal regression – check with correlation analysis; see Chapter 

9). One critical thing that we need to consider is called the “proportional odds 

assumption” or the “parallel lines assumptions”. The assumption behind ordinal 

regression analysis is that the coefficients that describe the relationship between, for 

example, the lowest versus all higher categories of the outcome variable are the same 

as those that describe the relationship between the next lowest category and all higher 

categories, and so on. Because the relationships between all pairs of categories are 

assumed to be the same, we only get one estimate for each x-variable.  

 

The parallel lines assumption 

The effect of x is the same for each pair of categories in y 

 

If the parallel lines assumption is violated, we should consider another type of 

analysis: either we could use multinomial regression (see Chapter 16) or we could 

change our ordinal outcome into a binary version and use logistic regression instead 

(see Chapter 14).  
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Parallel lines assumption: Function 

 

 

 

1. Go to the Menu bar, choose Analyze\Regression\Ordinal.  

2. A new window called Ordinal Regression will open.   

3. In the left box, all your variables are displayed. You choose the 

variable you want to have as your dependent variable (y) and transfer 

it to the box called Dependent.  

4. Then you choose the variables you want as your independent 

variables (x). If they are categorical (i.e. nominal/ordinal with more 

than two values), you transfer them to the box called Factor(s) and 

they are continuous (i.e. ratio/interval) or binary, you transfer them 

to the box called Covariate(s). It is possible to include variables of 

both types at the same time. 

5. Click on Output. 

6. Tick the box called Test of parallel lines. 

7. Click on Continue. 

8. Click on OK to get the results in your Output window.  
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Parallel lines assumption: Syntax 

 

  

 

PLUM DEPVAR BY INDEPVARS1 WITH INDEPVARS2 

  /CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) 

MXSTEP(5) PCONVERGE(1.0E- 6) SINGULAR(1.0E-8) 

  /LINK=LOGIT 

  /PRINT=FIT PARAMETER SUMMARY TPARALELL.  

 

 

DEPVAR   Name of the dependent variable. 

 

BY INDEPVARS1 Name of the categorical (i.e. nominal/ordinal with 

more than two categories) independent variables.* 

or 

WITH INDEPVARS2 Name of the binary or continous independent 

variables. 

 

TPARALELL   Order a test of the parallel lines assumption 

* If you make dummies of your categorical variables, you include them as 

INDEPVAR2 instead. 
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Parallel lines assumption: Example  

 

 

 

(Data: SPSS_data2.sav) 

 

PLUM health WITH income gender age_3cat_younger age_3cat_older 

  /CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) 

MXSTEP(5) PCONVERGE(1.0E-6) SINGULAR(1.0E-8) 

  /LINK=LOGIT 

  /PRINT=FIT PARAMETER SUMMARY TPARALELL. 

 

 

health    Self-rated health (1=Very good; 2=Good; 3=Fair; 4=Poor) 

income    Income scale 1 (Lowest step) to 10 (Highest step) 

gender    Gender (0=Man; 1=Woman) 

age_3cat_younger Age intervals: 15-29 (0=No; 1=Yes) 

age_3cat_middle Age intervals: 30-49 (0=No; 1=Yes) Reference category 

age_3cat_older  Age intervals: 50-98 (0=No; 1=Yes) 
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Output 

 

Look at the table called Test of Parallel Lines. The column called Sig. shows the p-

value for the test of the parallel lines assumption. If the p-value is above 0.05, the test 

is statistically non-significant and the assumption has not been violated. If the p-value 

is below 0.05, the test is statistically significant and the assumption has been violated. 

In the current example, the p-value is 0.000 and therefore the model violates the 

parallel lines assumption – therefore, we should consider using another type of 

regression analysis.  
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16. MULTINOMIAL 

REGRESSION 

Outline 

16.1 Simple multinomial regression 

16.2 Multiple multinomial regression 

16.3 Model diagnostics 
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Introduction 

 

Multinomial regression is used when y is nominal with more than two categories, i.e. 

polytomous (see Section 2.2). However, it is a good idea not to have too many 

categories because the interpretation quickly gets quite messy (if you have more than 

5-6, try to collapse some of the categories).  

 

If you have only one x, it is called “simple” multinomial regression, and if you have 

more than one x, it is called “multiple” multinomial regression. Regardless of whether 

you are doing a simple or a multiple regression, the x-variables can be categorical 

(nominal/ordinal) and/or continuous (ratio/interval). 

 

Key information from multinomial regression 

1. Direction  

Negative Relative risk ratio below 1 

Positive Relative risk ratio above 1 

2. Effect size  

Relative risk ratio The relative risk of the outcome being one 

category divided by the relative risk that the 

outcome is the baseline category, for every one-

unit increase in x 

3. Statistical significance  

P-value p<0.05 Statistically significant at the 5 % level 

p<0.01 Statistically significant at the 1 % level 

p<0.001 Statistically significant at the 0.1 % level 

95 % Confidence intervals Interval does not include 1: 

Statistically significant at the 5 % level 

Interval includes 1:  

Statistically non-significant at the 5 % level 
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Relative risk ratios (RRR) 

 

The most complicated part about the multinomial regression is that we decide on a 

reference category in the outcome variable as well (for linear, logistic and ordinal 

regression, we only had to deal with reference categories for the x-variables). To make 

it easier to distinguish between reference categories in x on the one hand, and in y on 

the other hand, the following text will continue to talk about “reference category” 

when x-variables are concerned but use “reference level” with regard to the y-variable. 

 

All right, so our outcome should have a reference level – what does that mean? Let us 

use an example: 

 

 

Example 

We want to investigate the association between gender (x) and preferred ice-cream 

flavour (y). Gender has the values 0=Man and 1=Women. Preferred ice-cream 

flavour has the values: 1=Vanilla, 2=Chocolate, 3=Strawberry. We choose the first 

category (vanilla) as our reference level. When we run the multinomial regression 

analysis, we will get two relative risk ratios; one for the risk of the outcome being 

chocolate instead of vanilla depending on the values of the x-variable, and one for 

the outcome being strawberry instead of vanilla depending on the values of the x-

variable.  

 

 

So, basically multinomial regression is used to predict the “relative risk” of being a 

“case” based on the values of the x-variable(s). Just as for linear regression analysis, 

we get a coefficient (log relative risk) that shows the effect of x on y. However, 

because multinomial regression is based on other assumptions that linear regression, 

we cannot interpret these coefficients very easily. Instead we focus on something 

called the “relative risk ratio” (“RRR”). We can get the relative risk ratio by taking 

the “exponent” of the coefficient: “exp(B)”.  

 

So what is this about “relative risk ratios” – what happened to odds ratios? Well, these 

are two different statistical concepts but they are very similar. As previously 

discussion in e.g. Chapters 14 and 15, the OR is the odds of the outcome being a case 

divided by the odds of the outcome being a non-case, for every one-unit increase in x. 

The RRR is the risk of the outcome being a case given a certain value of x, divided 

by the risk of the outcome being a case given another value of x. This may sound 

complicated, but the take-home message is that odds ratios and relative risk ratios are 

interpreted in the similar way.  
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The RRR is interpreted in the following way: “for every one-unit increase in x, y 

increases/decreases by [the RRR]”. Accordingly, if you get a negative RRR (below 

1), you say: “for every one-unit increase in x, y decreases by [the RRR]”, and if you 

get a positive RRR (above 1), you say: “for every one-unit increase in x, y increases 

by [the RRR]”. However – and this is important – in multinomial regression we have 

to deal with the fact that our outcome has a reference level to take into consideration. 

Therefore, the RRR in multinomial regression analysis is interpreted in the following 

way: “for every one-unit increase in x, the risk of y being [Category y2] compared to 

y being [Category y1; reference level] increases/decreases by [the RRR]”, and for 

every one-unit increase in x, the risk of y being [Category y3] compared to y being 

[Category y1; reference level] increases/decreases by [the RRR]”, and so on. 

 

Unlike linear regression, where the null value (i.e. value that denotes no difference) is 

0, the null value for multinomial regression is 1. Also note that a RRR can never be 

negative – it can range between 0 and infinity. What the RRR actually stands for – 

and whether we can say that an effect is small or big – depends on the values of x and 

y.  

 

P-values and confidence intervals 

 

In multinomial regression analysis you can of course get information about statistical 

significance, in terms of both p-values and confidence intervals. The p-values and the 

confidence intervals will give you partly different information, but: they are not 

contradictory. If the p-value is below 0.05, the 95 % confidence interval will not 

include 1 (statistical significance at the 5 % level), and if the p-value is above 0.05, 

the 95 % confidence interval will include 1 (statistical non-significance at the 5 % 

level). 

 

Note that when you look at the p-value, you can rather easily distinguish between the 

significance levels (i.e. you can directly say whether you have statistical significance 

at the 5 % level, the 1 % level, or the 0.1 % level). When it comes to confidence 

intervals, SPSS will by default choose 95 % level confidence intervals (i.e. statistical 

significance at the 5 % level). For some analyses, it is however possible to change the 

confidence level for the intervals. For example, you may instruct SPSS to show 99 % 

confidence intervals instead. 

 

R-Squared 

 

In contrast to linear regression, “R-Squared” or “R2” is not very usable (again, 
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because of the assumptions behind multinomial regression). You will, however, get a 

value for the so-called “Nagelkerke R Square” which is similar to the R-squared. 

 

Simple versus multiple regression models 

 

The difference between simple and multiple regression models, is that in a multiple 

regression each x-variable’s effect on y is estimated while taking into account the 

other x-variables’ effects on y. We then say that these other x-variables are “held 

constant”, or “adjusted for”, or “controlled for”. Because of this, multiple regression 

analysis is a way of dealing with the issue of “confounding” variables, and to some 

extent also “mediating” variables (see Section 11.2). 

 

It is highly advisable to run a simple multinomial regression for each of the x-variables 

before including them in a multiple regression. Otherwise, you will not have anything 

to compare the adjusted relative risk ratios with (i.e. what happened to the RRR when 

other x-variables were included in the analysis). Including multiple x-variables in the 

same model usually (but not always) means that the associations are reduced in 

strength – which would of course be expected if the x-variables overlapped in their 

effect on y.      

 

Define your analytical sample 

 

Before you begin, make sure that you have defined your analytical sample correctly 

(see Section 12.6).  
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16.1 Simple multinomial regression 

 

Quick facts  

Number of variables One dependent (y) 

One independent (x) 

Scale of variable(s) Dependent: nominal (with more than two categories) 

Independent: categorical (nominal/ordinal) or 

continuous (ratio/interval) 
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Simple multinomial regression: Function 

 

 

 

1. Go to the Menu bar, choose Analyze\Regression\Multinomial 

Logistic.  

2. A new window called Multinomial Logistic Regression will open.   

3. In the left box, all your variables are displayed. You choose the 

variable you want to have as your dependent variable (y) and transfer 

it to the box called Dependent.  

4. Click on Reference Category to choose which category of your 

outcome you want to have as your reference level: First Category 

(lowest value), Last Category (highest value) or Custom (any value 

you want).  

5. Then you choose the variable you want as your independent variable 

(x). If it is categorical (i.e. nominal/ordinal with more than two 

values), you transfer it to the box called Factor(s) and if it is 

continuous (i.e. ratio/interval) or binary, you transfer it to the box 

called Covariate(s). 

6. Click on OK to get the results in your Output window.  
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Simple multinomial regression: Syntax 

 

  

 

NOMREG DEPVAR (BASE=LAST ORDER=ASCENDING) BY INDEPVAR1 

WITH INDEPVAR2 

  /CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) 

LCONVERGE(0)   PCONVERGE(0.000001)  

    SINGULAR(0.00000001) 

  /MODEL 

  /STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) 

ENTRYMETHOD(LR) REMOVALMETHOD(LR) 

  /INTERCEPT=INCLUDE 

  /PRINT=PARAMETER SUMMARY LRT CPS STEP MFI. 

 

 

DEPVAR   Name of the dependent variable. 

 

BY INDEPVAR1 Name of the categorical (i.e. nominal/ordinal with 

more than two categories) independent variable.* 

or 

WITH INDEPVAR2 Name of the binary or continous independent 

variable. 

 

* If you make dummies of your categorical variable, you include them as 

INDEPVAR2 instead. 
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Simple multinomial regression with a continuous x 

 

 

Example 1  

Suppose we want to examine the association between unemployment days (x) and 

type of hospitalization (y) by means of a simple multinomial regression analysis. 

Unemployment days are measured as the total number of days in unemployment 

during a year, and ranges from 0 to 365. Type of hospitalization has the values 

1=No hospitalization, 2=Out-patient care, and 3=In-patient care. We choose “no 

hospitalization” as our reference level. Let us say that we get a RRR for 

unemployment days and out-patient care that is 2.88. That would mean that for 

every one-unit increase of employment days, the risk of experiencing out-patient 

care compared to no hospitalization increases. Moreover, we get a RRR for 

unemployment days and in-patient care that is 4.02. This would suggest that for 

every one-unit increase of employment days, the risk of experiencing in-patient 

care compared to no hospitalization increases. 

 

 

 

Example 2  

In another example, we may examine the association between intelligence scores 

(x) and the preferred type of books (y). Intelligence scores are measured by a series 

of tests that render various amounts of points, and ranges between 20 and 160 

points. Preferred type of books has the values 1=Fiction, 2=Non-fiction, 3=Comic 

books. We choose “fiction” as our reference level. Here, we get a RRR of 1.40 for 

intelligence scores and non-fiction, meaning that for every one-unit increase of 

intelligence, the likelihood of preferring non-fiction books increases. For 

intelligence scores and comic books, the RRR is 0.92. This suggests that for every 

one-unit increase of intelligence, the likelihood of preferring comic books 

decreases. 

  

 



 

309 

 

Simple multinomial regression with a continuous x: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

NOMREG bfast (BASE=FIRST ORDER=ASCENDING) WITH age 

  /CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) 

LCONVERGE(0) PCONVERGE(0.000001)  

    SINGULAR(0.00000001) 

  /MODEL 

  /STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) 

ENTRYMETHOD(LR) REMOVALMETHOD(LR) 

  /INTERCEPT=INCLUDE 

  /PRINT=PARAMETER SUMMARY LRT CPS STEP MFI. 

 

 

bfast   Preferred breakfast (1=Energy bar; 2=Oatmeal; 3=Cereal) 

age   Age in years (Min=18; Max=79) 
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Output 

 

Look at the table called Parameter Estimates. The column called Exp(B) shows the 

relative risk ratio (RRR) for the variable age. The RRR for Oatmeal is 1.116, which 

means that the likelihood of preferring oatmeal over an energy bar increases for every 

one-unit increase in age. The RRR is 1.026 for Cereal, which means that the likelihood 

of preferring cereal over an energy bar also increases for every one-unit increase in 

age. The column called Sig. shows the p-value. Here, both p-values are 0.000 which 

means that the results are statistically significant (at the 0.1 % level). Then we look at 

the part of the table called 95 % Confidence Interval for Exp (B). This gives us the 

lower confidence limit (Lower Bound) and the upper confidence limit (Upper Bound). 

The intervals do not include the null value (which is always x=1 in multinomial 

regression) and, thus, the results are statistically significant (at the 5 % level).  
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Simple multinomial regression with a binary x 

 

 

Example 1  

Suppose we want to examine the association between gender (x) and political views 

(y) by means of a simple multinomial regression analysis. Gender has the values 

0=Man and 1=Woman, whereas political views has the values 1=Conservative, 

2=Centre, and 3=Liberal. The category “centre” is chosen as the reference level. 

Now, we get a RRR of 0.82 for conservative, which means that women are less 

likely to be conservative than centre compared to men. The RRR for liberal is 1.39, 

suggesting that women are more likely to be liberal than centre compared to men.  

 

 

 

Example 2  

Here we want to examine the association between having small children (x) and the 

type of pet owned (y) by means of a simple multinomial regression analysis. Having 

small children is measured as either 0=No or 1=Yes. Type of pet owned has the 

values 1=No pet, 2=Cat, 3=Dog, and 4=Other type of pet. The category “no pet” is 

chosen as the reference level. Let us say that we get a RRR for cat that is 1.50. This 

means that those who have small children are more likely to own a cat than no pet 

at all, compared to those who do not have small children. The RRR for dog is 1.75, 

suggesting that those who have small children are more likely to own a dog than no 

pet at all, compared to those who do not have small children. Moreover, the RRR 

for “other type of pet” is 1.96, which tells us that those who have small children are 

more likely to own “other type of pet” than no pet at all, compared to those who do 

not have small children. 
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Simple multinomial regression with a binary x: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

NOMREG bfast (BASE=FIRST ORDER=ASCENDING) WITH gender 

  /CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) 

LCONVERGE(0) PCONVERGE(0.000001)  

    SINGULAR(0.00000001) 

  /MODEL 

  /STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) 

ENTRYMETHOD(LR) REMOVALMETHOD(LR) 

  /INTERCEPT=INCLUDE 

  /PRINT=PARAMETER SUMMARY LRT CPS STEP MFI. 

 

 

bfast   Preferred breakfast (1=Energy bar; 2=Oatmeal; 3=Cereal) 

gender   Gender (0=Man; 1=Woman) 
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Output 

 

Look at the table called Parameter Estimates. The column called Exp(B) shows the 

relative risk ratio (RRR) for the variable gender. The RRR for Oatmeal is 1.030, which 

means that women are more likely than men to prefer oatmeal over an energy bar. The 

RRR for Cereal is 1.029, which means that women are more likely than men to also 

prefer cereal over an energy bar. The column called Sig. shows the p-value. Here, both 

p-values are above 0.05 which means that the results are not statistically significant. 

Then we look at the part of the table called 95 % Confidence Interval for Exp (B). 

This gives us the lower confidence limit (Lower Bound) and the upper confidence 

limit (Upper Bound). The intervals include the null value (which is always x=1 in 

multinomial regression) and, thus, the results are not statistically significant (at the 5 

% level).  
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Simple multinomial regression with a categorical x (dummies) 

 

 

Example 1  

We want to investigate the association between educational attainment (x) and 

building type (y) by means of a simple multinomial regression analysis. 

Educational attainment has the values: 1=Compulsory education, 2=Upper 

secondary education, and 3=University education.  

Building type has the values 1=Apartment, 2=Town house, and 3=Villa. We choose 

“apartment” as our reference level. Since our x-variable is categorical with more 

than two categories, we have to create dummies (one 0/1 coded variable for each 

category). We choose those with compulsory education as our reference category, 

meaning that this dummy will not be included in the analysis. The RRR for upper 

secondary education in combination with town house is 2.01, meaning that those 

with upper secondary education are more likely to live in a town house than an 

apartment, compared to those with compulsory education. The RRR for upper 

secondary education in combination with villa is 1.32, meaning that those with 

upper secondary education are more likely to live in a villa than an apartment, 

compared to those with compulsory education. For university education in 

combination with town house, the RRR is 0.95, suggesting that those who have 

university education are less likely to live in a town house than an apartment 

compared to those with compulsory education. Finally, the RRR for university 

education in combination with villa is 3.44, meaning that those with university 

education are more likely to live in a villa than an apartment, compared to those 

with compulsory education. 
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Example 2  

Suppose we are interested in the association between family type (x) and adolescent 

health behaviour (y). Family type has three categories: 1=Two-parent household, 

2=Joint custody, and 3=Single-parent household. Adolescent health behaviour has 

the values 1=No smoking or alcohol consumption, 2=Smoking, 3=Alcohol 

consumption, 4=Both smoking and alcohol consumption. We choose the category 

no smoking or alcohol consumption as the reference level. Since our x-variable is 

categorical with more than two categories, we have to create dummies (one 0/1 

coded variable for each category). We choose adolescents living in a two-parent 

household as our reference category, meaning that this dummy will not be included 

in the analysis. The RRR for the combination joint custody and smoking is 1.20, 

meaning that adolescents living in joint custody are more likely to smoke than not 

to smoke or drink alcohol compared to those living in a two-parent household. The 

RRR for the combination single-parent household and smoking is 1.49, meaning 

that adolescents living in single-parent household are more likely to smoke than not 

to smoke or drink alcohol compared to those living in a two-parent household. The 

RRR for the combination joint custody and alcohol consumption is 1.00, meaning 

that adolescents living in joint custody are as likely to drink alcohol as not to smoke 

or drink alcohol compared to those living in a two-parent household. The RRR for 

the combination single-parent household and alcohol consumption is 2.02, meaning 

that adolescents living in single-parent household are more likely to drink alcohol 

than not to smoke or drink alcohol compared to those living in a two-parent 

household. The RRR for the combination joint custody and both smoking and 

alcohol consumption is 1.55, meaning that adolescents living in joint custody are 

more likely to both smoke and drink alcohol than not to smoke or drink alcohol 

compared to those living in a two-parent household. The RRR for the combination 

single-parent household and both smoking and alcohol consumption is 4.45, 

meaning that adolescents living in single-parent household are more likely to both 

smoke and drink alcohol than not to smoke or drink alcohol compared to those 

living in a two-parent household. 
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Simple multinomial regression with a categorical x (dummies): 

Example 

 

 

(Data: SPSS_data1.sav) 

 

NOMREG bfast (BASE=FIRST ORDER=ASCENDING) WITH edcat_no 

edcat_somecoll edcat_colldeg edcat_postgrad 

  /CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) 

LCONVERGE(0) PCONVERGE(0.000001)  

    SINGULAR(0.00000001) 

  /MODEL 

  /STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) 

ENTRYMETHOD(LR) REMOVALMETHOD(LR) 

  /INTERCEPT=INCLUDE 

  /PRINT=PARAMETER SUMMARY LRT CPS STEP MFI. 

 

 

bfast    Preferred breakfast (1=Energy bar; 2=Oatmeal; 3=Cereal) 

edcat_no           Did not complete high school  (0=No; 1=Yes) 

edcat_highsc   High school degree  (0=No; 1=Yes) Reference group 

edcat_somecoll  Some college  (0=No; 1=Yes) 

edcat_colldeg  College degree  (0=No; 1=Yes) 

edcat_postgrad  Post-undergraduate degree  (0=No; 1=Yes) 
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Output 

 

Look at the table called Parameter Estimates. The column called Exp(B) shows the 

relative risk ratios (RRR) for the dummies of the variable edcat. The first part of the 

table concerns educational differences in Energy bar versus Oatmeal. The RRR for 

the combination edcat_no and Oatmeal is 1.568, which means that those who did not 

complete high school are more likely to prefer oatmeal over an energy bar compared 

to those with a high school degree. The RRR is for the combination edcat_somecoll 

and Oatmeal is 0.922, which means that those who have some college education are 

less likely to prefer oatmeal over an energy bar compared to those with a high school 

degree. The RRR for the combination edcat_colldeg and Oatmeal is 1.032, which 

means that those who have a college degree are more likely to prefer oatmeal over an 

energy bar compared to those with a high school degree. The RRR for the combination 

edcat_postgrad and Oatmeal is 0.955, which means that those who have a post-

undergraduate degree are less likely to prefer oatmeal over an energy bar compared 

to those with a high school degree.  

 

The second part of the table concerns educational differences in Energy bar versus 

Cereal. The RRR for the combination edcat_no and Cereal is 1.049, which means that 

those who did not complete high school are more likely to prefer cereal over an energy 

bar compared to those with a high school degree. The RRR for the combination 

edcat_somecoll and Cereal is 1.039, which means that those who have some college 

education are more likely to prefer cereal over an energy bar compared to those with 

a high school degree. The RRR for the combination edcat_colldeg and Cereal is 1.075, 

which means that those who have a college degree are more likely to prefer cereal 

over an energy bar compared to those with a high school degree. The RRR for the 

combination edcat_postgrad and Cereal is 1.047, which means that those who have a 

post-undergraduate degree are more likely to prefer cereal over an energy bar 

compared to those with a high school degree. 

 

The column called Sig. shows the p-values. Here, most p-values are above 0.05 which 

means that the results are not statistically significant. The only significant difference 

is for edcat_no and Oatmeal (p=0.000) meaning that those who did not complete high 

school are significantly more likely to prefer oatmeal over an energy bar compared to 

those with a high school degree (at the 0.1 % level). Then we look at the part of the 

table called 95 % Confidence Interval for Exp (B). This gives us the lower confidence 

limit (Lower Bound) and the upper confidence limit (Upper Bound). Most intervals – 

with the exception of edcat_no and Oatmeal – include the null value (which is always 

x=1 in multinomial regression) and, thus, the overall results are not statistically 

significant.  
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16.2 Multiple multinomial regression 

 

Quick facts  

Number of variables One dependent (y) 

At least two independent (x) 

Scale of variable(s) Dependent: nominal (with more than two categories) 

Independent: categorical (nominal/ordinal) or 

continuous (ratio/interval) 
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Multiple multinomial regression: Function 

 

 

 

1. Go to the Menu bar, choose Analyze\Regression\Multinomial 

Logistic.  

2. A new window called Multinomial Logistic Regression will open.   

3. In the left box, all your variables are displayed. You choose the 

variable you want to have as your dependent variable (y) and transfer 

it to the box called Dependent.  

4. Click on Reference Category to choose which category of your 

outcome you want to have as your reference level: First Category 

(lowest value), Last Category (highest value) or Custom (any value 

you want).  

5. Then you choose the variables you want as your independent variables 

(x). If they are categorical (i.e. nominal/ordinal with more than two 

values), you transfer them to the box called Factor(s) and they are 

continuous (i.e. ratio/interval) or binary, you transfer them to the box 

called Covariate(s). It is possible to include variables of both types at 

the same time. 

6. Click on OK to get the results in your Output window.  
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Multiple multinomial regression: Syntax 

 

  

 

NOMREG DEPVAR (BASE=LAST ORDER=ASCENDING) BY 

INDEPVARS1 WITH INDEPVARS2 

  /CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) 

LCONVERGE(0)   PCONVERGE(0.000001)  

    SINGULAR(0.00000001) 

  /MODEL 

  /STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) 

ENTRYMETHOD(LR) REMOVALMETHOD(LR) 

  /INTERCEPT=INCLUDE 

  /PRINT=PARAMETER SUMMARY LRT CPS STEP MFI. 

 

 

DEPVAR   Name of the dependent variable. 

 

BY INDEPVARS1 List the names of the categorical (i.e. 

nominal/ordinal with more than two categories) 

independent variables.* 

or 

WITH INDEPVARS2 List the names of the binary or continous 

independent variables. 

 

* If you make dummies of your categorical variables, you include them as 

INDEPVAR2 instead. 
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Multiple multinomial regression 

 

 

Example  

Suppose we are interested to see if smoking (y) is related to having small children 

(x), residential area (x), and income (x). Smoking has the values 1=Non-smoker, 

2=Former smoker, and 3=Current smoker. The category “non-smoker” is chosen 

as the reference level. Having small children is measured as either 0=No or 1=Yes. 

Residential area has the values 1=Metropolitan, 2=Smaller city, and 3=Rural. 

Income is measured as the yearly household income from salary in thousands of 

SEK (ranges between 100 and 700 SEK). When we do our multinomial regression, 

we can include the variables “having children” and “income” as they are, since the 

first is binary and the other is continuous. The remaining variable – residential area 

– is categorical with more than two values and therefore dummies must be used. 

We create one dummy for each category of “residential area”. The first dummy 

(metropolitan) is chosen as the reference category and is thus excluded from the 

analysis.   

 

In the regression analysis, we get a RRR of 1.19 for having small children and 

former smoker, suggesting that those who have small children are more likely to be 

former smokers than non-smokers compared to those who do not have small 

children. Then we get a RRR of 0.77 for having small children and being a current 

smoker, which means that those who have small children are less likely to be 

current smokers than non-smokers compared to those who do not have small 

children. These results are adjusted for residential area and income. The RRR for 

living in a smaller city and being a former smoker is 2.09, which suggests that those 

who live in a smaller city are more likely to be former smokers than non-smokers 

compared to those who live in a metropolitan area. The RRR for living in a smaller 

city and being a current smoker is 3.71, which suggests that those who live in a 

smaller city are more likely to be current smokers than non-smokers compared to 

those who live in a metropolitan area. The RRR for living in an urban area and 

being a former smoker is 3.59, which suggests that those who live in an urban area 

are more likely to be former smokers than non-smokers compared to those who live 

in a metropolitan area. The RRR for living in an urban area and being a current 

smoker is 5.01, which suggests that those who live in an urban area are more likely 

to be current smokers than non-smokers compared to those who live in a 

metropolitan area. These results are adjusted for having small children and income. 

With regard to income, the RRR of being a former smoker is 0.93, suggesting that 

for every one-unit increase in income, the risk of being a former smoker decreases. 
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The RRR of being a current smoker is 0.78, which means that for every one-unit 

increase in income, the risk of being a current smoker also decreases. These results 

are adjusted for having small children and residential area. 
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Multiple multinomial regression: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

NOMREG bfast (BASE=FIRST ORDER=ASCENDING) WITH age gender 

edcat_no edcat_somecoll edcat_colldeg edcat_postgrad        

  /CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) 

LCONVERGE(0) PCONVERGE(0.000001)  

    SINGULAR(0.00000001) 

  /MODEL 

  /STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) 

ENTRYMETHOD(LR) REMOVALMETHOD(LR) 

  /INTERCEPT=INCLUDE 

  /PRINT=PARAMETER SUMMARY LRT CPS STEP MFI. 

 

 

bfast    Preferred breakfast (1=Energy bar; 2=Oatmeal; 3=Cereal) 

age    Age in years (Min=18; Max=79) 

gender    Gender (0=Man; 1=Woman) 

edcat_no           Did not complete high school  (0=No; 1=Yes) 

edcat_highsc   High school degree  (0=No; 1=Yes) Reference group 

edcat_somecoll  Some college  (0=No; 1=Yes) 

edcat_colldeg  College degree  (0=No; 1=Yes) 

edcat_postgrad  Post-undergraduate degree  (0=No; 1=Yes) 
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Output 

 

Look at the table called Parameter Estimates. The column called Exp(B) shows the 

mutually adjusted relative risk ratios for the variables gender, age, and edcat. The first 

part of the table concerns differences between Energy bar and Oatmeal. The RRR for 

gender and Oatmeal is 1.059, which means that women are more likely to prefer 

oatmeal over energy bars. For age and Oatmeal, the RRR is 1.117, suggesting that for 

every one-unit increase in age, individuals are more likely to prefer oatmeal over 

energy bars. The RRR for the combination edcat_no and Oatmeal is 0.966, which 

means that those who did not complete high school are less likely to prefer oatmeal 

over an energy bar compared to those with a high school degree. The RRR for the 

combination edcat_somecoll and Oatmeal is 0.859, which means that those who have 

some college education are less likely to prefer oatmeal over an energy bar compared 

to those with a high school degree. The RRR for the combination edcat_colldeg and 

Oatmeal is 1.086, which means that those who have a college degree are more likely 

to prefer oatmeal over an energy bar compared to those with a high school degree. 

The RRR for the combination edcat_postgrad and Oatmeal is 0.939, which means that 

those who have a post-undergraduate degree are less likely to prefer oatmeal over an 

energy bar compared to those with a high school degree.  

 

The second part of the table concerns educational differences in Energy bar versus 

Cereal. For gender and Cereal, the RRR is 1.042. This means that women are more 

likely to prefer cereal over energy bars. The RRR for age and Cereal is 1.027, 

suggesting that for every one-unit increase in age, individuals are more likely to prefer 

cereal over energy bars. The RRR for the combination edcat_no and Cereal is 0.911, 

which means that those who did not complete high school are less likely to prefer 

cereal over an energy bar compared to those with a high school degree. The RRR for 

the combination edcat_somecoll and Cereal is 1.007, which means that those who 

have some college education are about as likely to prefer cereal over an energy bar 

compared to those with a high school degree. The RRR for the combination 

edcat_colldeg and Cereal is 1.028, which means that those who have a college degree 

are more likely to prefer cereal over an energy bar compared to those with a high 

school degree. The RRR for the combination edcat_postgrad and Cereal is 0.959, 

which means that those who have a post-undergraduate degree are less likely to prefer 

cereal over an energy bar compared to those with a high school degree. 

 

The column called Sig. shows the p-values. Here, most p-values are above 0.05 which 

means that the results are not statistically significant (at the 5 % level). However, age 

is the exception (p=0.000): increased age is associated at a statistically significant 

level (the 0.1 % level) with preferring both oatmeal and cereal over energy bars. Then 
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we look at the part of the table called 95 % Confidence Interval for Exp (B). This 

gives us the lower confidence limit (Lower Bound) and the upper confidence limit 

(Upper Bound). Most intervals – with the exception of the ones concerning age – 

include the null value (which is always x=1 in multinomial regression) and, thus, the 

overall results are not statistically significant (at the 5 % level).  
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16.3 Model diagnostics 

 

The assumptions behind multinomial regression are different from linear regression. 

For example, we do not need to assume linearity, homoscedasticity or normality. 

Multicollinearity should however be avoided (i.e. strong correlations between the x-

variables in multiple ordinal regression – check with correlation analysis; see Chapter 

9). It is not very easy to evaluate model fit with multinomial regression. One 

alternative is to carry out a bunch of separate logistic regressions. For example, if the 

outcome was smoking and that variable had the categories 1=Non-smoker, 2=Former 

smoker, and 3=Current smoker, we could make two separate logistic regressions. The 

first would have the outcome 0=Non-smoker and 1=Former smoker, whereas the 

second would have the outcome 0=Non-smoker and 1=Current smoker. Then we 

could use the same type of model diagnostics as for logistic regression (see Section 

14.3). Another option to assess the model’s goodness of fit – or basically its predictive 

power – is to use a “likelihood ratio test” (which is a type of chi-square test). The 

likelihood ratio test gives an answer to whether the estimated model (i.e. the model 

with one or more x-variables) predicts the outcome better than the null model (i.e. a 

model without any x-variables).   

 

Estimate the goodness of fit 

Likelihood ratio test Does the estimated model predict the outcome better 

than the null model? 
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Likelihood ratio test: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

NOMREG bfast (BASE=FIRST ORDER=ASCENDING) WITH gender age 

edcat_no edcat_somecoll edcat_colldeg edcat_postgrad        

  /CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) 

LCONVERGE(0) PCONVERGE(0.000001)  

    SINGULAR(0.00000001) 

  /MODEL 

  /STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) 

ENTRYMETHOD(LR) REMOVALMETHOD(LR) 

  /INTERCEPT=INCLUDE 

  /PRINT=PARAMETER SUMMARY LRT CPS STEP MFI. 

 

 

bfast    Preferred breakfast (1=Energy bar; 2=Oatmeal; 3=Cereal) 

age    Age in years (Min=18; Max=79) 

gender    Gender (0=Man; 1=Woman) 

edcat_no           Did not complete high school  (0=No; 1=Yes) 

edcat_highsc   High school degree  (0=No; 1=Yes) Reference group 

edcat_somecoll  Some college  (0=No; 1=Yes) 

edcat_colldeg  College degree  (0=No; 1=Yes) 

edcat_postgrad  Post-undergraduate degree  (0=No; 1=Yes) 
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Output 

 

Look at the table called Model Fitting Information. The column called Sig. shows the 

p-value for the likelihood ratio test. If the p-value is above 0.05, the test is statistically 

non-significant and the estimated model fits the data better than the empty model. If 

the p-value is below 0.05, the test is statistically significant and this means that the 

estimated model does not fit the data better. In the current example, the p-value is 

0.000 and therefore we can say that the estimated model fits the data rather poorly.  
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17. INTERACTION 

ANALYSIS 

 

Outline 

17.1 Interaction analysis for linear regression 

17.2 Interaction analysis for logistic regression 
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Introduction 

 

 

 

 

 

 

 

 

 

 

A moderator (or effect modifier) is a variable (z) that influences the very association 

between the x-variable and the y-variable. Thus, the association between x and y looks 

different depending on the value of z.  

 

 

Some examples 

We want to examine the association between social support (x) and mental health 

(y). We think that the association may be moderated by gender (z). For example, 

we may expect social support to be more important for mental health among women 

than among men.  

We are interested in the association between mother’s educational attainment (x) 

and babies’ birth weight (y). It is reasonable that mother’s smoking (z) affects that 

association: there may be an association between x and y if the mother smokes, but 

no association between x and y if the mother does not smoke.  

 

 

x y 

z 
x 

z 
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Main effects and interaction effects 

 

In order to carry out an interaction analysis, we first we need to decide on the type of 

regression analysis that fits our outcome of choice – it could be any type (e.g. linear, 

logistic, ordinal, multinomial, or any other type). When we have decided that, we need 

a minimum of three independent variables. 

 

Independent variables 

x The variable we are mainly interested in with regard to its effect on y.  

Called “main effect term”. 

z The variable we suspect may modify the effect of x on y. 

Called “main effect term”. 

x*z The product of x and z – or the x-variable times the z-variable. 

Called “interaction effect term” or simple “interaction term”. 

Create the interaction with the Compute command (see Section 5.2).  

 

Based on the interaction analysis, we get information on whether or not there is a 

statistically significant interaction (i.e. if the z-variable modifies the effect of x on y 

or not). We also get information on in which direction the interaction effect goes, i.e. 

what it means.   

 

Measurement scales 

 

There are some important things to consider before carrying out the interaction 

analysis, such as the measurement scale of the independent variables (see Section 2.2). 

Generally, it is easier to interpret interaction terms based on the following 

combinations:  

 

Combinations of variables 

One binary x * one binary z  

One ordinal/ratio/interval x * one 

binary z 

 

One binary x * one 

ordinal/ratio/interval z 

 

One ordinal/ratio/interval x * one ordinal/ratio/interval z 
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In other words: avoid nominal variables with more than two categories! If you 

combine two ordinal/ratio/interval variables, make sure that x-variable and the z-

variable goes in the same direction. This means that higher values in both variables 

should be either “better” or “worse” in relation to the outcome.   

 

Interpretation 

 

The most complicated part about interaction analysis is the interpretation. It is 

important that you keep track how your variables are coded, if you want to say 

something about what the interaction means.  

 

 

Example 

We want to examine the association between social support (x) and happiness (y). 

We think that the association may be moderated by gender (z). The following 

hypotheses are formulated: 1) Those with higher levels of social support are more 

likely to be happy, 2) Women are more likely to be happy, and 3) Social support is 

more strongly associated with happiness among women than among men.  

 

Since the outcome is binary (0=Not happy and 1=Happy), we choose logistic 

regression analysis. Social support ranges between 0 and 10, where higher values 

reflect higher levels of social support. Gender has the values 0=Man and 1=Women. 

 

To begin with, we examine the association between x and y: the odds ratio for social 

support is 1.20, which confirmed our first hypothesis. Next, we examine the 

association between z and y: the odds ratio for gender is 1.17, which confirms the 

second hypothesis. Finally, we include x and z as well as the interaction term (i.e. 

x*z) in a new logistic regression. The interaction term has an odds ratio of 1.45, 

which means that the combination of having higher levels of social support and 

being a woman is associated with increasing chances of being happy.  
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If the interpretation of the interaction analysis is difficult, you may improve your 

understanding by doing a separate regression analysis for each category of the z-

variable (this is of course only possible if you have a rather large dataset and not too 

many categories in your z-variable). This is called “stratified” analyses. We can go 

back to the example to illustrate this: 

  

 

Example 

We want to examine the association between social support (x) and happiness (y). 

We think that the association may be moderated by gender (z). The following 

hypotheses are formulated: 1) Those with higher levels of social support are more 

likely to be happy, 2) Women are more likely to be happy, and 3) Social support is 

more strongly associated with happiness among women than among men.  

 

Since the outcome is binary (0=Not happy and 1=Happy), we choose logistic 

regression analysis. Social support ranges between 0 and 10, where higher values 

reflect higher levels of social support. Gender has the values 0=Man and 1=Women. 

 

To begin with, we examine the association between x and y among men only: the 

odds ratio for social support is 1.04. Next, we examine the association between x 

and y among women only: the odds ratio for social support is 1.76. Thus, we now 

see that we have a stronger effect of social support on happiness among women 

than among men (just like the interaction analysis said.  

 

 

Remember, however: stratified analyses are perhaps easier to understand, but if you 

want to say that differences between strata (i.e. categories of the z-variable) are 

statistically significant, you should do a proper interaction analysis.  
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Interaction analysis for linear regression: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

Part 1 

 

COMPUTE active_gender=active*gender. 

EXECUTE. 

 

Part 2 

 

REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS CI(95) R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN  

  /DEPENDENT hourstv 

  /METHOD=ENTER active gender active_gender. 

 

 

hourstv    Hours spent watching TV last week (Min=0; Max=36) 

active    Active lifestyle (0=No; 1=Yes) 

gender    Gender (0=Man; 1=Woman) 

active_gender  Interaction term: active*gender 
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Output 

 

Look at the table called Coefficients. The column called B shows the B coefficients. 

We focus on the B coefficient for the interaction term, active_gender. Here, it is 0.211. 

This means that the combination of being active (since this category has the higher 

value) and being a woman (since this category has the higher value) is associated with 

more TV watching. The column called Sig. shows the p-value. For the interaction 

term, active_gender, the p-value is 0.471 which means that the interaction is not 

statistically significant (at least not at the 5 % level). Then we look at the part of the 

table called 95 % Confidence Interval for B. This gives us the lower confidence limit 

(Lower Bound) and the upper confidence limit (Upper Bound). For the interaction 

term, active_gender, the lower limit is -0.364 whereas the upper limit is 0.787. The 

interval includes the null value (which is always x=0 in linear regression) and, thus, 

the results are not statistically significant.  

 

To sum up, there is no statistically significant interaction between having an active 

lifestyle and gender with regard to TV watching. Put differently, gender does not 

moderate the association between active lifestyle and hours watching TV.  
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Interaction analysis for logistic regression: Example 

 

 

 

(Data: SPSS_data1.sav) 

 

Part 1 

 

COMPUTE age_gender=age*gender. 

EXECUTE. 

 

Part 2 

 

LOGISTIC REGRESSION VARIABLES active 

  /METHOD=ENTER age gender age_gender  

  /PRINT=CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). 

 

 

active    Active lifestyle (0=No; 1=Yes) 

age    Age in years (Min=18; Max=79) 

gender    Gender (0=Man; 1=Woman) 

age_gender  Interaction term: age*gender 
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Output 

 

Look at the table called Coefficients. The column called Exp(B) shows the odds ratios 

(OR). We focus on the OR for the interaction term, age_gender. Here, it is 1.016. This 

means that the combination of being older (since increased values reflect older age) 

and being a woman (since this category has the higher value) increased the likelihood 

of being active. The column called Sig. shows the p-value. For the interaction term, 

age_gender, the p-value is 0.000 which means that the interaction is statistically 

significant (at the 0.1 % level). Then we look at the part of the table called 95 % C.I. 

for EXP(B). This gives us the lower confidence limit (Lower) and the upper 

confidence limit (Upper). For the interaction term, age_gender, the lower limit is 

1.009 whereas the upper limit is 1.023. The interval does not includes the null value 

(which is always x=1 in logistic regression) and, thus, the results are statistically 

significant.  

 

To sum up, there is a statistically significant interaction between having age and 

gender with regard to having an active lifestyle. Put differently, gender does moderate 

the association between age and active lifestyle: age has a larger positive effect on 

active lifestyle among women than among men.   
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