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INTRODUCTION 

The purpose of this guide is to provide both basic understanding of statistical concepts (know-

why) as well as practical tools to analyse quantitative data in SPSS (know-how). We wanted to 

keep the guide completely free of formulas (i.e. brain-freezing mathematical equations). In doing 

so, we have tried to explain everything at the most elementary level and only include aspects 

that are important in actual research. As such, this guide is pragmatic and research-oriented. 

Hopefully, you will find it useful.  

 

This guide consists of two parts. The first part (Chapters 1-5) concerns various aspects 

concerning data management and descriptive statistics. Next, we discuss issues related to 

statistical significance (Chapter 6). The following part deals with some basic types of statistical 

analysis, such as t-tests, ANOVA, chi-square, correlation analysis, and factor analysis (Chapters 

7-10). Then we discuss theoretical and practical dimensions of regression analysis (Chapters 11-

12) before continuing into how to actually conduct regression analysis, including interaction 

analysis (Chapters 13-17).  

 

There are two data materials used in the guide. The first is “SPSS_Data1” which is mostly based 

on a hypothetical data set available through SPSS. The second is “SPSS_Data2”, which is primarily 

based on several waves of data collection related to the Word Values Survey.  
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General advice 

Keep all your files for the course/project in the same main folder and use sub folders to 

organise the files further. 

Save your files under appropriate names.  

Example: “Ericsson_Data_Lesson1_130603” 

Keep a copy of the original file, just in case. 

Example: “Ericsson _Data_Lesson1_Original” 

Do not forget to continuously save your file while you work with it. 

Always double-check that you have spelled values and labels correctly. 

If you delete or change something by mistake, it is often possible to undo the last change by 

holding down the Ctrl-key while pressing “z” on your key board. 

Use syntax! 

 

Why syntax? 

The syntax is basically a text file where you can add comments and SPSS commands. The reasons 

for why everyone should use the syntax function are: 

 

• It is a way of documenting and archiving everything you have done with the data 

material. 

• It is easy to repeat parts or all of the analysis.  

• Other people involved in the data material can easily understand what you have done 

and how you have done it.  

• It saves an enormous amount of time.  
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1. THE SPSS ENVIRONMENT 

The SPSS environment may come across as rather confusing at first, but it is actually quite 

logical once you get a hang of it. In this part of the guide, we will discuss the following aspects of 

the SPSS environment: 

 

Outline 

1.1 General functions 

1.2 Variable view 

1.3 Creating a new data set 

1.4 Data view 

1.5 Syntax 

1.6 Output 
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1.1 General functions 

The Menu bar (“File”, “Edit” and so on) is located in the upper area. 

 

 
 

In the lower left corner, two tabs are available: Data View and Variable View. When you start 

SPSS, Variable View is default. 

 

File types 

SPSS uses three types of files with different functions and extensions: 

 

Type Extension Content 

Data set .sav Data and variables 

Syntax .sps Commands and comments 

Output .spv Results 
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Options 

The SPSS menu works similar to the menus in many other programs, such as Word or Excel. 

Some useful options are listed below: 

 

Option Description 

Open a file Go to File\Open and choose Data, Syntax or Output. Browse your 

hard drive to locate the file. Then click on Open. 

Save a file Go to File\Save As. Type in a descriptive name and then click Save. 

You can also choose to save only some of the variables into the new 

data set by clicking Variables (before saving) and then ticking the 

boxes next to the variables you want to keep. 

Overwrite a file Go to File\Save. 

Import a data set Go to File\Open\Data and choose the desired format next to Files of 

type. Browse the file and click on Open. 
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1.2 Variable view 

In Variable View, different columns are displayed. Each line corresponds to a variable. A variable 

is simply a quantity of something, which varies and can be measured, such as height, weight, 

number of children, educational level, gender and so forth.  

 

Column Function 

Name Name of the variable. It is your own choice, but make it understandable and 

do not use numbers or symbols as the first letter since SPSS will not accept 

it. Moreover, you cannot use spaces in the name.  

For example: “edu_level” 

Type Indicates the variable type. The most common is Numeric (only accepts 

numerical data, for example age or number of children) and String (also 

accepts letters, e.g. for qualitative questions). Typically, all responses in a 

questionnaire are transformed into numbers.  

For example: “Man”=0 and “Woman”=1, or “Non-smoker”=1, “Ex-smoker”=2 

and “Current smoker”=3.  

Width Corresponds to the number of characters that is allowed to be typed in the 

data cell. Default for numerical and string variables is 8, which only needs to 

be altered if you want to type in long strings of numbers or whole sentences. 

Decimals Default is 2 for numerical variables and will automatically be displayed as 

.00 in the data view, if not otherwise specified. 

Label The description of the variable. Use the question that the variable is based 

upon or something else accurately describing the variable.  

For example: “What is your highest level of education?” 

Values Here you can add labels to each response alternative.  

For example: For the variable gender, “Men” are coded as 0 and “Women” 

are coded as 1. Through the option Values you tell SPSS to label each 

number according to the correct response. Next to Value (below Value 

Labels), type in “0” and next to Label, type in “Men”. Then click Add. Next to 

Value (below Value Labels), type in “1” and next to Label, type in “Women”. 

Then click Add. 

Missing By default, missing values will be coded as “.” (dot) for numerical variables 

in the data set. For missing values in String variables, cells will be left blank. 
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There are some additional columns in Variable View, but just ignore them for now. Normally, 

they do not need to be altered. 

 

Options 

To alter the variable options, you may click the cells. Some columns can be typed directly into, 

while you need to press the arrows or dots that appeared when you click in the columns. It is 

often possible to use “copy and paste” here – this may efficient when you, for example, have 

several variables with the same Values.  

 

 

 
 

If you want to delete a variable, select the numbered cell to the left of the variable and then 

right-click and choose Clear. 

 

 



1.3 Creating a new data set 

If you have a questionnaire, you can easily create the corresponding data structure in Variable 

View in SPSS. For example: 

 

Name Type Width Decimals Label Values Missing 

gender Numeric 1 0 Gender 0=Man 

1=Woman 

None 

srh Numeric 1 0 Self-rated health 1=Poor 

2=Fair 

3=Good 

4=Excellent 

None 

income Numeric 10 0 Disposable income None None 

 

 



1.4 Data view 

Once the structure of the data set is determined, it is time to take a look at Data View. Access this 

view by clicking on the tab named Data View in the lower left corner. 

 

 
 

Here, each column corresponds to a variable, whereas each row corresponds to a case (most 

commonly an individual). It is possible to change the order of the variables by highlighting a 

column and “drag and drop”. You may also change the width of the column by placing the mouse 

over the right border of a column (next to the name of the column), pressing down the button 

and then “drag and drop”.  

 

If you are creating a new data set, simply type in your data, one row (and one column) at a time. 

Use the left and right arrow key on your key board to move between cells. 

 

Make sure that you have chosen the right Type of variable before you enter your data (i.e. 

Numeric or String). 
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1.5 Syntax 

The syntax is presented in a new window called IBM SPSS Statistics Syntax Editor. Note that the 

Menu bar is very similar to the one available through Data View and Variable View. In order 

words, you do not always have to go back to Data View or Variable View to access the Menu bar. 

 
 

 
 

There are two text areas: the big one to the right is where all commands will be displayed. What 

is a command? It is basically when you tell SPSS that you want it to perform a specific test or 

analysis or to create a table or a graph. All these features have their own commands. To the left, 

you will have a “short list” of the same commands. 

 

How to include a command in the syntax 

There are two ways of including a command in the syntax. The first alternative is to go through 

the menu system. For all features provided in the Menu bar, you will have a button called Paste. 

If you click on this button, the correct command will be pasted into the syntax you currently 

have open. If you have several syntax windows open, make sure that the command is pasted into 

the correct one.  
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The second alternative is to write the command yourself. If you have never used SPSS syntax 

before, this is not recommended in the beginning. However, once you have created a “stock” of 

commands using Paste, you may start re-using these commands by copy, paste and then alter 

them directly in your syntax. When you write your own commands in the syntax, the functions 

will have different colours. The command will be red if it is not written properly. 

 

Once you have a long list of commands in your syntax, it may be difficult to keep track of them. It 

is therefore highly recommended that you comment your syntax. You may add a heading above 

each command, and also make notes of interesting findings etc. In order to insert a comment, 

write an asterisk (*) before the comment begins. End the comment with a dot/period (.). If the 

comment is not framed with an asterisk and a dot, it may be tangled up in the commands. You 

can easily double-check that the comments are correctly entered, because if they turn grey if 

they are.  

 

 

Examples 

* This is a frequency table of gender. 

* Linear regression analysis of educational level (independent variable) and income 

(dependent variable). 
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How to execute the command 

To execute the command, highlight all the rows for that specific command and press the big 

green arrow below the Menu bar in the syntax window. You do not have to highlight one 

command at a time - it is possible to execute several commands at once. If you have added 

comments to your syntax, make sure that they are grey (i.e. inactive), otherwise SPSS will take 

them for (faulty) commands. 
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1.6 Output 

Everything you order in SPSS (e.g. graphs, tables, or analyses) ends up in a window called 

Output. In the area to the left, all the different steps are listed. It is possible to collapse specific 

steps by clicking on the box with the minus sign (and expand it again by clicking on the same 

box, now with a plus sign). In the area to the right, your actual output is shown. First, you see the 

syntax for what you have ordered, and then you get the tables or graphs related to the specific 

command.  
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2. BASIC STATISTICAL CONCEPTS 

The first part of this chapter is devoted to issues related to populations and samples. These are 

things you need to be aware of in order to make correct judgements of your data material. 

Before it is possible to describe the variables in the data set through the different commands in 

SPSS, we need to know more about the specific variables. Here, we will address two major 

aspects: measurement scales and distributions.  

 

Outline 

2.1 Study population and sampling 

2.2 Measurement scales 

2.3 Distributions 
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2.1 Study population and sampling 

Before we start looking into our data, we need to establish what our population is, since the 

population is what we want to say something about. A population is often referred to by “N”.  

 

 

 

 

 

 

 

 

 

 

 

 

A population can be almost anything: We have populations which are geographically defined, 

such as the world, a country or a city; we have age-defined populations such as teenagers, 

infants and elderly; and also specific groups such as women, drug addicts, teachers, master 

students, and so on. 

 

Population (N) 
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Sampling 

It is seldom the case that we examine the whole population which we have chosen. Instead, we 

use sampling – that basically means that we take a smaller sample of the population: a study 

sample. A study sample is often denoted by “n”. The reasons behind sampling are primarily that 

it is very costly and time consuming to collect data for the entire population. However, 

sometimes you can include the whole population - like if you have small populations, such as one 

school or one hospital or one company (this is often referred to as a case study). Another 

example is when you use national registers (then you usually do not have to considered aspects 

such as time or cost since the data is already available).   

 

 

 

 

 

 

 

 

 

 

 

 

There are many different sampling techniques available. Generally, they can be categorised into 

two types that include several sub types:  

 

Types of sampling  

Non-probability sampling 

Snowball Finding respondents through already selected respondents 

Quota Adding suitable individuals until a certain quota is achieved 

Convenience Easy access of respondents 

Probability sampling 

Random Every individual has the same chance of being selected 

Systematic Sampling with intervals, e.g. every fifth of a list 

Stratified Random sampling from different groups 

Clustered Random sampling of groups, choosing all individuals from these groups 

Sampling 

Study sample (n) Population (N) 
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Non-probability sampling is most common in small-scale studies, marketing research, interview 

studies and studies like that. Snowball sampling means that you start out with some 

respondents and ask them to find other suitable respondents (like friends or other people they 

know). Quota sampling is often used in marketing research. For example, the researchers wants 

to have 100 respondents who have tried a new coffee brand and stands outside the store until 

they have found 100 persons who have bought that specific brand. Then we have convenience 

sampling. This is when you pick respondents who are easy to get access to, like friends, family, 

or members of an organisation that you are a member of yourself, and so on.  

 

The other type of sampling is probability sampling. First, we have the random probability 

sampling, which postulates that every individual in the population should have the equal chance 

of being selected. Another procedure is the systematic sampling, where you, for example, draw 

every fifth or seventh from a list of people. Stratified sampling is when you draw random 

samples from some specific groups. For example if you want to compare labour market 

outcomes between Swedes and immigrants, you may not get a large enough sample of 

immigrants if making a random sampling. Therefore you can draw a larger random sample from 

the smaller group. Finally, we have clustered sampling. Perhaps you start out by drawing a 

random sample of schools and then select all students attending ninth grade in these schools. 

 

Probability sampling constitutes the foundation of quantitative data analysis. Why is it so 

important? Well, we want our study sample to be “representative”. This means that it should 

have the same characteristics as our population. This is a requirement to be able to draw 

conclusions about the population based on the study sample (also known as generalizability).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Sampling 

Study sample (n) Population (N) 

Representativeness 
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Missing data: attrition and non-response 

An issue that almost all quantitative researchers deal with has to do with “missing data”. What is 

missing data? Well, when we have defined our population and conducted a probability sampling, 

we start collecting data for the individuals in our study sample – either through questionnaires 

or registers (or both). It is very seldom the case, however, that we get complete information for 

all individuals. We thus get missing data. When we use register data, missing data is commonly 

called “attrition”, and when we use survey data (i.e. questionnaire data), missing data is usually 

called “non-response”. If we have problems with missing data, we may not be able to draw 

conclusions about the population based on the study sample. This is discussed in further detail 

in Section 12.5.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sampling 

Study sample (n) 
Population (N) 

Representativeness 

 

Missing data 
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2.2 Measurement scales 

Types of scale 

We use a scale to make the measurements of a variable, and the characteristics of the scale 

determine the characteristics of the data we collect and, in turn, how we describe our data. 

Generally speaking, there are four measurement scales: nominal, ordinal, ratio and interval. 

Nominal and ordinal variables are often called “categorical” or “qualitative”, whereas ratio and 

interval variables are often referred to as “continuous” or “quantitative”. 

 

Name Type 

Nominal 
Categorical/qualitative 

Ordinal 

Ratio 
Continuous/quantitative 

Interval 

 

It should also be noted that a nominal variable with only two categories/values is called 

“dichotomous” (or “binary, or “dummy”) whereas a nominal variable with more than two 

categories is called “polytomous”. 

 

Differences between the scales 

These scales differ in three important ways: hierarchy, distance and zero point. 

 

Checklist  

Is it possible to arrange/order the values hierarchically? Yes/No 

Is it the same distance between the values? Yes/No 

Does the scale have an absolute zero point? Yes/No 

 

What does “arrange/order the values hierarchically” mean? If we take gender as an example, it is 

not reasonable to say that “Man” is less or more than “Woman”. As another example, we can take 

ethnicity: it is not reasonable to see “Danish” as less or more than “Finnish”. For variables such 

as self-rated health, on the other hand, it is possible to say that “Excellent health” is better than 

“Good health”. Moreover, it is possible to say that the grade “A” is better than the grade “B”.   
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What does “distance” mean? If we take income as an example, we know that 1000 dollars are 

twice as much as 500 dollars, and 2000 dollars are twice as much as 1000 dollars. The same 

logic applies to variables such as age: it is the same distance between 2 years and 4 years as 

between 6 years and 8 years. Thus, having the same distance between the values means that the 

differences between two values are the same regardless of which part of the scale you are 

looking at.  

 

What does “absolute zero point” mean? Basically, it means that the scale cannot have negative 

values. It is possible for the temperature to be minus 10 degrees Celsius, but is not possible to 

have less than zero years of schooling or having less than zero days of unemployment.  

 

Examples 

Below, we can see some examples of variables on the different measurement scales.  

 

Scale Values Examples 

Nominal Order values: No 

Same distance: No 

Absolute zero point: Not applicable 

Yes/no questions 

Gender 

Ethnicity 

Ordinal Order values: Yes 

Same distance: No 

Absolute zero point: Not applicable 

Attitude questions 

Self-rated health 

Educational level 

Ratio Order values: Yes 

Same distance: Yes 

Absolute zero point: Yes 

Age 

Income 

School marks 

Interval Order values: Yes 

Same distance: Yes 

Absolute zero point: No 

Temperature (Celsius) 

 

A nominal variable is hence a variable for which the values cannot be ranked, and we do not 

have the same distance between the values, e.g. gender or questions that can be answered with 

yes or no. Ordinal variables are similar, but here the values can be ranked, such as for self-rated 

health: “Excellent is better than “Good”; “Good” is better than “Fair”; and “Fair” is better than 

“Poor”. However, for ordinal scales we do not have the same distance between the values: the 

“amount” of better health is not necessarily the same between “Poor” and “Fair” as between 

“Good” and “Excellent”. The ratio scale is similar to the ordinal scale, but here we do have the 
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same distance between the values: for example, we know that 10 years of schooling is twice as 

much as 5 years of schooling. The interval scale is similar to the ratio scale, but here we also 

have an absolute zero point.  

 

Types of values 

It is possible to distinguish between two types of values: discrete and continuous. Discrete 

values can only assume “whole” values, such as “Man”, “Women”, “Green”, “Car”, and “House”. 

Continuous values can assume any value along a scale, such as “3.5 years”, “58.3 seconds”, and 

“163.5 centimetres”. Note, however, that continuous variables (i.e. on a ratio or interval scale) do 

not necessarily have continuous values. For example, number of cars is a ratio variable but it has 

discrete values: while the average number of cars in a population may be 0.8, it is not correct 

(although many do) to say that any given individual in a population has 0.8 cars (since a car is a 

“whole” value”).  

 

Name Type 

Discrete “Whole” values 

Continuous Any value 
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2.3 Distributions 

For continuous variables (i.e. on a ratio or interval scale) it is important to know what the 

distribution of values in the variable looks like.  

 

Normal distributions 

One common type of distribution is the “normal distribution”. Many statistical methods are 

based on normal distributions.  

 

 
 

The above figure is an example of a typical normal distribution. Here are some basic facts about 

the normal distribution: 

 

Basic facts about normal distributions 

Always bell-shaped. 

The peak always indicates the mean value.  

Always symmetrical, i.e. the tails on each side of the mean are equally large. This means that 

50 % of the values are on one side of the mean, and 50 % of the values are on the other side of 

the mean. 

The area under the curve is always 1 (100 % of the values). 

 

Below is an example of a (normal) distribution of height among Swedish men at the time of 

military service enlistment (in Swedish: “lumpen”). In this example, the mean height is about 

180 centimetres. The less common a certain height gets, the smaller the area under the curve. 

Here, the tails are about equally large on both sides of the mean, suggesting that it is 
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approximately as common for individuals in the sample to be shorter than the mean as it is for 

them to be taller than the mean.  

 

 

 
 

Normal distributions can look quite different. The figures below are all examples of normal 

distributions. The difference lies in the amount of spread of the values: because the shape of a 

normal distribution is not only defined by the mean value, but by the standard deviation! 

 

 

 
 

But what is “standard deviation”? A simple definition is that it expresses how much variation 

exists from the mean for a given variable. If we have a low standard deviation, it suggests that 
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the individuals in our data have values close to the mean, and if we have a high standard 

deviation, it indicates that the values are more spread out over a large range of values.  

 

 
 

The empirical rule of normal distributions tells us the following (see the figure above): 

 

• 68 % of the values fall within -1 and +1 standard deviations. 

• 95 % of all values fall within -2 and +2 standard deviations. 

• Nearly 100 % of all values fall within -3 and +3 standard deviations. 

 

 

Example 

We have collected information about weight for a sample of individuals. If the mean weight in 

this sample was 70 kilos and the standard deviation was 5 kilos, the empirical rule would give 

us the following information:  

 

68 % of the individuals have a weight of 65-75 kilos: 

Lower limit: 70 kilos - (5 kilos*1); upper limit: 70 kilos + (5 kilos*1) 

 

95 % of the individuals have a weight of 60-80 kilos: 

Lower limit: 70 kilos - (5 kilos*2); upper limit: 70 kilos + (5 kilos*2) 

 

Nearly 100 % of the have a weight of 55-85 kilos: 

Lower limit: 70 kilos - (5 kilos*3); upper limit: 70 kilos + (5 kilos*3) 

 

 

As long as we have information about the mean value and the standard deviation, it is possible to 

do the same calculation for all the normal distributions. Remember that a more pronounced 
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peak indicates a low standard deviation, whereas a flat distribution indicates a high standard 

deviation.  

 

Skewed distributions 

There are other types of distribution. One very common type of distribution is the “skewed 

distribution”. Here are some facts about skewed distributions: 

 

Basic facts about skewed distributions 

Always asymmetrical = tails are different, i.e. the empirical rule does not apply 

Skew can be positive (right tail longer) or negative (left tail longer) 

 

Examples of a positively skewed distribution (like the figure to the left) are: number of hospital 

visits, number of days in unemployment, number of telephone calls during a day. Most 

individuals will have the value zero or a low value, whereas a few will have increasingly high 

values. 

 

Examples of a negatively skewed distribution (like the figure to the right) are: age of retirement, 

or a very easy test. Most individuals will have high values, and then a few will have very low 

values.  

 

 

 
                                 Negatively skewed distribution    Positively skewed distribution 
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The skewness of the distribution can be indicated by two types of measure: skewness and 

kurtosis.  

 

Facts about the skewness measure 

Measure of the symmetry of a distribution. 

Negative skewness value = the distribution is skewed to the right (longer tail to the right) 

Positive skewness value = the distribution is skewed to the left (longer tail to the left) 

A perfect normal distribution has a skewness of 0 

Skewness value between -2 and +2 is usually considered acceptable 

 

 

Facts about the kurtosis measure 

Measure of the shape (or the “peakedness”) of a distribution 

A perfect normal distribution has a kurtosis of 0 (mesokurtic distribution) 

Kurtosis value above 0 = Leptokurtic distribution (sharper peak and longer/fatter tails) 

Kurtosis value below 0 = Platykurtic distribution (rounder peak and shorter/thinner tails) 

Kurtosis value between -2 and +2 is usually considered acceptable 
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3. DESCRIPTIVE STATISTICS 

When we know about the measurement scale and the distribution of the variables in our data 

set, we can decide on how to best describe our variables. In this type of exploratory data 

analysis, we use a set of tables and graphs as well as measures of central tendency and variation. 

Here, we will address the following types of description: 

 

Outline 

3.1 Tables 

3.2 Graphs 

3.3 Measures of central tendency 

3.4 Measures of variation 

 

Two types of table will be covered: frequency table and cross table. With regard to graphs, we 

will discuss bar chart, pie chart, histogram and scatterplot. For measures of central tendency, the 

mean, mode, and median are addressed. Moreover, some examples of measures of variation will 

be included here, namely minimum, maximum, range, and standard deviation.   

 

Going back to what we learnt about measurement scales and the distributions, this is generally 

how you should match the different types of variables with the different types of description: 

 

Type of variable  

Categorical (nominal/ordinal) Frequency table 

Cross table 

Bar chart 

Pie chart 

Mode 

Continuous (ratio/interval) Histogram 

Scatterplot 

Mean (if normal distribution) 

Median (if skewed distribution) 

Min 

Max 

Range 

Standard deviation 
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3.1 Tables 

Tables are useful if one wants to see the distribution of values for categorical (nominal or 

ordinal) variables. Here, we will discuss frequency tables and cross tables. 

 

A frequency table is a simple but very useful description of one variable and gives us both the 

frequency and various types of percentages of individuals with the different values.  

 

Column Content 

Frequency The number of individuals in the different categories. 

Percent The distribution of percent also taking into consideration any missing 

information. This means that if some individuals would have missing 

information about gender, the percentages in this column would be 

dependent upon that. 

Valid Percent Same as Percent but does not take missing into account. This column is 

what we primarily focus on. 

Cumulative percent Adds the percentages from top to bottom. 

 

Below, compare the first table with the second table to see the differences between Percent and 

Valid Percent (in the second table, the information about gender has been removed for one of 

the individuals). 
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A cross table is a description of how individuals are distributed according to two variables. The 

table in the example below, is a cross table with the variables gender and health. Here, it is 

possible to see the distribution of health by gender, and vice versa.  

 

 

 
 

The first table below also includes “column percentages”, demonstrating the distribution of 

health according to gender. The second instead adds “row percentages”, demonstrating the 

distribution of gender according to health status. Note that the frequencies (i.e. the number of 

individuals) in the cells are the same, but the percentages are different since the focus shifts 

between the tables. If you find this difficult to separate in your mind, one good advice is perhaps 

to see where the percentages add up to 100 % in Total - in the rows or in the columns.  

 

 

 

 

 
Important to note is that if we would have individuals with missing information with regard to 

gender or health, these would be excluded from the cross table. Therefore, it is important to 

always look at the two variables used in a cross table separately (through e.g. frequency tables) 

as well.  
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3.2 Graphs 

For categorical variables, bar charts or pie charts may be useful. For continuous variables, we 

can use histograms (one variable) or scatterplots (two variables).  

 

A bar chart is like an illustration of a frequency table. On the x-axis (horizontal axis) you see the 

different values (or categories) of the variable and on the y-axis (vertical axis) you can choose to 

see either the percentage of individuals in each category (like in the graph below) or the number 

of individuals in each category.  

 

 

 
 

A pie chart can also be seen as a simple illustration of a frequency table. The slices represent the 

different values (or categories) of the variable and they can be specified in terms of the 

percentage of individuals in each category (like in the graph below) or the number of individuals 

in each category. 
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A histogram is similar to a bar chart but, unlike the bar chart, it is suitable for continuous 

variables. Here, a reference line representing the normal distribution curve can be added. The 

histogram will give us an idea about whether the distribution (of the continuous variable) is 

normal or skewed. 

 

 

 
 

When we had two categorical variables, we could produce a cross table to see how these two 

variables were related. If we have two continuous variables, we may use something called a 

scatterplot instead. Each dot in the scatterplot represents one individual in our data. We may 
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also include a reference line here, to see if we have a pattern in our data: for example, if high or 

low values in one variable correspond to high or low values in the other variable. In the 

scatterplot below, we can see that increasing school class size seems to be related to increasing 

scores on a cognitive test, at least to some degree. 
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3.3 Measures of central tendency 

Central tendency can be defined as measures of the location of the middle in a distribution. The 

most common types of central tendency are: 

 

Measure Definition 

Mean The average value 

Median The value in the absolute middle 

Mode The most frequently occurring value 

 

The mean is perhaps the most commonly used type of central tendency and we get it by dividing 

the sum of all values by the number of values. 

 

 

Example 

We have four fishes that weight:  

 

 

 

         1.1 kilos                    0.8 kilos                    1.1 kilos                    1.0 kilos 

 

What is the mean? 

First we add the values together: 1.1+0.8+1.1+1.0=4.0 

Then we divide the sum of the values by the number of values: 4.0/4=1. 

The mean is thus 1 kilo. 
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The median - i.e. the value in the absolute middle of the distribution - is obtained by sorting all 

the values from low to high and then identifying the value in the middle of the list. 

 

 

Example 

We have nine individuals who are of the following heights: 

 

 

158 cm  159 cm  164 cm  165 cm  173 cm  174 cm  175 cm 179 cm 181 cm  

 

The median is thus 173 cm. 

 

 

Note that when we have an odd number of values, it is easy to identify the value in the absolute 

middle of the distribution. When we have an even number of values, we get the median by 

adding the two values in the middle together and dividing the sum by 2.   

 

The mode - or “type” - is defined as the most frequently occurring value in a distribution. Here as 

well, one starts by sorting responses from the lowest to the highest value and then identifies the 

most common value. 

 

 

Example 

We have information about the number of cars in the household: 

 

 

 

 

1 car         1 car         1 car         1 car         1 car         2 cars         2 cars         3 cars 

 

The mode is thus 1 car (since this is the most common value). 

 

 

The choice of type of central tendency is based on a) the measurement scale of the variable and 

b) the distribution of the variable. Generally, if the variable is categorical (nominal or ordinal), 

the mode is preferred. If the variable is continuous (ratio or interval), the mean or the median is 
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preferred. In the latter case, the mean is chosen if the variable is normally distributed and the 

median is chosen if the variable has a skewed distribution.  

 

Scale Type Central tendency 

Nominal 
Categorical Mode 

Ordinal 

Ratio 
Continuous Normal distribution: Mean; Skewed distribution: Median 

Interval 

 

Why should one not use the median or the mean for categorical variables? For nominal 

variables, it is easy to give an answer. Let us take country of birth as an example. In this example, 

the variable is coded into four categories: 1) Sweden, 2) China, 3) Canada, and 4) Norway. This is 

clearly a nominal variable. Since the order of the categories is random (i.e. the order of the 

categories does not really matter), the location of the absolute middle in the distribution would 

not tell us anything information about the variable: the “content” of the middle would change 

completely if we changed the order of the categories. Let us take gender (which is also on a 

nominal scale) as another example: it would not make any sense to give the mean or median of 

gender. For some ordinal variables, however, the median is sometimes used. For example, if we 

have five categories of occupational class, which can be ranked from lower class to upper class, it 

may be interesting to give the value of the median (for example, in this case, the median could be 

lower non-manuals which would tell us something about the distribution of values).      
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Why it is important to consider the distribution of the variable for continuous variables before 

we decide on the type of central tendency? If we take a look at the figures below, we can draw 

the following conclusions: if we have a perfectly normally distributed variable, the mean, median 

and mode would all be the same. However, if the distribution is skewed, the median would be a 

better description of the location of the middle in the distribution.   
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3.4 Measures of variation 

Besides the mean, the median and the mode, we may use some measures of variation to describe 

our variables further. Here are some of the most common measures of variation: 

 

Measure Definition 

Min The lowest value 

Max The highest value 

Range The difference between the lowest and highest value 

Standard deviation The dispersion of values from the mean 

 

These measures are most suitable for continuous variables (i.e. ratio or interval) but sometimes 

min, max, and range are used for ordinal variables as well. However, they cannot be used for 

nominal variables (for the same reason as why we do not use mean or median to describe 

nominal variables).  
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4. PRODUCING DESCRIPTIVE STATISTICS IN SPSS 

This part of the guide will describe how to use SPSS to produce the various tables and graphs as 

well as measures of central tendency and variation previously discussed.  

 

Outline 

4.1 Descriptives 

4.2 Frequency table 

4.3 Cross table 

4.4 Bar chart 

4.5 Pie chart 

4.6 Histogram 

4.7 Scatterplot 

4.8 Edit graphs 
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4.1 Descriptives 

Quick facts  

Number of variables At least one 

Scale of variable(s) Continuous (ratio/interval) or ordinal 

 

The Descriptives function is used primarily for continuous variables (i.e. ratio/interval) but 

could also be used for some ordinal variables that are approximately continuous (e.g. rating 

measures). The SPSS function allows you to order the following statistics: 

 

Types of statistic  

Mean Mean value 

Sum Sum of all values 

Stddev Standard deviation 

Min Minimum (smallest) observed value 

Max Maximum (largest) observed value 

Variance Variance 

Range The difference between the minimum value and the maximum value 

Semean Standard error of the mean 

Kurtosis Kurtosis and standard error of kurtosis 

Skewness Skewness and standard error of skewness 
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Descriptives: Function 

 

 

1. Go to the Menu bar, choose Analyze\Descriptive Statistics\Descriptives.  

2. This will open up a new window called Descriptives. 

3. A small window will open, where you see two boxes.  

4. In the left box, all your variables are displayed. Here you choose the variable(s) 

you want to get the measures of central tendency and/or variation for.  

In other words, if you want to, you can choose several variables here, and SPSS 

will produce descriptives for all of them. 

5. Click on the small arrow between the boxes to transfer the variable(s) to the box 

to the right.  

6. Click on Options.  

7. Tick the boxes for the measures you want to have.  

8. Click on Continue to close the small window.  

9. Click on OK to close the Descriptives window in order to get the results in your 

Output window.  
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Descriptives: Syntax 

  

 

DESCRIPTIVES VARIABLES=VARNAME 

  /STATISTICS=MEASURES. 

 

 

VARNAME    Insert the name of the variable you want to use. 

 

MEASURES     Insert the measures you want to produce. 

For example:  

MEAN SUM MIN MAX RANGE STDDEV 
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Descriptives: Example 

 

 

(Data: SPSS_data1.sav) 

 

DESCRIPTIVES VARIABLES=age 

  /STATISTICS=MEAN MIN MAX RANGE STDDEV. 

 

 
age   Age in years (Min=18; Max=79) 
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Output 

In the table called Descriptive Statistics, all statistics you ordered will be displayed – one type of 

statistic per column.  
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4.2 Frequency table 

Quick facts  

Number of variables At least one (one table will be produced for each variable) 

Scale of variable(s) Categorical (nominal/ordinal) 

 
This function is used primarily for categorical variables (i.e. nominal/ordinal) but can be used 

for any type of variable; the main concern is that the table becomes too lengthy if there are many 

categories/values in the variable. The Frequencies function does not only allow us to create a 

frequency table, it is also possible to produce a variety of statistics. 

 

Types of statistic  

Frequency The absolute number of observations within each category 

Percent The percentage of observations within each category (incl. missing) 

Valid Percent The percentage of observations within each category (excl. missing) 

Cumulative Percent Accumulated percentage across categories 

Mean The average value 

Median The value in the absolute middle 

Mode The most frequently occurring value 

Sum Sum of all values 

Std. deviation Standard deviation 

Variance Variance 

Range The difference between the minimum value and the maximum value 

Minimum Minimum (smallest) observed value 

Maximum Maximum (largest) observed value 

S.E. mean Standard error of the mean 

Skewness Skewness and standard error of skewness 

Kurtosis Kurtosis and standard error of kurtosis 

Quartiles Cut-off values for four groups 

Cut points Cut-off values for a selected number of groups 

Percentiles Selected cut-off values for percentiles 
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Besides the frequency table itself and the types of statistic listed above, the Frequencies function 

makes it possible to order some specific graphs. The default is that no graph is produced, but you 

may change this to include a bar chart, a pie chart, or a histogram. If you choose a histogram, you 

may also add a normal curve. If you do order a graph, it is recommended that you go with the 

option of showing percentages rather than frequencies.  

 

Graphs  

Bar chart See Section 4.4 for detailed information 

Pie chart See Section 4.5 for detailed information 

Histogram See Section 4.6 for detailed information 
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Frequency table: Function  

 

 

1. Go to the Menu bar, choose Analyze\Descriptive Statistics\Frequencies.  

2. This will open up a new window called Frequencies. 

3. A small window will open, where you see two boxes. In the left box, all your 

variables are displayed.  

4. In the left box, you choose the variable(s) you want to get a frequency table for.  

In other words, you may choose several variables here, and SPSS will produce 

frequency tables for all of them. 

5. Click on the small arrow between the boxes to transfer the variable(s) to the box 

to the right.  

6. To order statistics for your variable, click on Statistics. In the new window called 

Frequencies: Statistics tick the boxes for the measures you want SPSS to show. 

Click on Continue.  

7. To order a graph, click on Charts. In the new window called Frequencies: Charts 

tick the box for the graph you want SPSS to show. Also make sure to tick the box 

Percentages. Click on Continue.  

8. Click on OK. 
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Frequency table: Syntax 

  

 
FREQUENCIES VARIABLES=VARNAME 

  /STATISTICS=MEASURES 

  /CHARTNAME SPECIFICATION 

  /ORDER=ANALYSIS.  

 
 

VARNAME    Insert the name of the variable you want to use. 

 

MEASURES     If you want to produce statistics, insert the types of statistic here.  

For example:  

MEAN  

or 

MEAN MEDIAN STDDEV 

 

CHARTNAME  If you want to produce a graph, insert the name of the graph here.  

For example:  

BARCHART  

PIECHART  

HISTOGRAM 

 

SPECIFICATION For bar charts and pie charts, specify if you want to display 

frequencies or percentages on the y-axis (i.e. vertical axis). 

 For example: 

 FREQ 

 PERCENT 

 For histograms, specify if you want to add a normal curve: 

 NORMAL 
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Frequency table: Example 

 

 

(Data: SPSS_data1.sav) 

 

FREQUENCIES VARIABLES=hometype 

  /STATISTICS=MODE MEDIAN 

  /ORDER=ANALYSIS.  

 

 

hometype   Building type (1=Single family; 2=Multiple family; 3=Townhouse;  

4=Mobile home) 
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Output/Step 1 

The table called Statistics gives a summary of the variable. SPSS automatically shows the number 

of valid values as well as the number of missing values. If you ordered any additional statistics, 

they will be displayed in this table as well.  

 

 

 
 

Output/Step 2 

The next table is the actual frequency table. Missing System provides information about the 

number of individuals with missing information. Frequency gives the number of individuals in 

each category of the variable. Percent shows the percentage of individuals in each category of 

the variable, including missing. Valid Percent gives the percentage of individuals in each category 

of the variable, excluding missing (this is the type of percentage we most often report). 

Cumulative Percent adds up the percentages from the first category to the second, from the 

second to the third, and so on. 
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4.3 Cross table 

Quick facts  

Number of variables Two (it is possible to split/panel the table by a third variable) 

Scale of variable(s) Categorical (nominal/ordinal) 

 
This function is used primarily for categorical variables (i.e. nominal/ordinal) but can be used 

for any type of variable; the main concern is that the table becomes too complex and difficult to 

interpret if there are many categories/values in the variables used. Moreover, it is possible to 

add a chi-square to the cross table (for more information about chi-square, see Chapter 8).  
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Cross table: Function 

 

 
1. Go to the Menu bar, choose Analyze\Descriptive Statistics\Crosstabs.  

2. A small window will open, where you see one big box and three small boxes. In 

the left box, all your variables are displayed.  

3. Here, you choose two variables: one to be the Row variable, and one to be the 

Column variable. It is your choice which variable is row and which is column, but 

it is recommended that you make that choice depending on how you want to 

interpret your crosstable. If you are unsure, try both ways to see which the better 

choice is.  

4. Move your variables to the Row and Column boxes by using the arrows.  

5. If you stop here and press OK, you will only have a crosstable that displays 

frequencies. In most cases, you also want to see percentages.  

6. To do this, click on Cells. Tick the boxes for Row and/or Column.  

7. Click on Continue. 

8. Click on OK to close the Crosstabs window in order to get the results in your 

Output window.  
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Cross table: Syntax 

  

 

CROSSTABS 

  /TABLES=VARNAME1 BY VARNAME2 

  /FORMAT=AVALUE TABLES 

  /CELLS=COUNT PERCENTAGES  

  /COUNT ROUND CELL. 

 

 

VARNAME1    Insert the name of the first variable you want to use.  

This variable will be chosen for rows. 

 

VARNAME2    Insert the name of the second variable you want to use.  

This variable will be chosen for columns. 

 

PERCENTAGES   Specify which type/types of percentages you want to see. 

For example:  

ROW COLUMN TOTAL 
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Cross table: Example 

 

 

(Data: SPSS_data1.sav) 

 

CROSSTABS 

  /TABLES=union BY gender 

  /FORMAT=AVALUE TABLES 

  /CELLS=COUNT ROW COLUMN  

  /COUNT ROUND CELL. 

 

 

gender   Gender (0=Man; 1=Woman) 

union   Union member (0=No; 1=Yes) 
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Output 

This is a cross table of the variables union and gender. Count allows us to count the number of 

times that a particular combination of the two variables occurs. The % within Union member 

shows the distribution of gender among those who are not a union member as well as the 

distribution of gender among those who are a union member (each row adds up to 100 %). The 

% within  Gender shows the distribution of union among men as well as the distribution of union 

among women (each column adds up to 100 %).   
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4.4 Bar chart 

Quick facts  

Number of variables Simple bar chart: one (it is possible to split/panel the chart by a 

second variable) 

Clustered bar chart: two (it is possible to split/panel the chart by 

a third variable) 

Scale of variable(s) Categorical (nominal/ordinal) 

 
The bar chart is useful primarily for categorical variables (i.e. nominal/ordinal) but can be used 

for any type of variable as long as there are not too many values for each variable. There are two 

useful types of bar chart: the simple bar chart and the clustered bar chart. The simple bar chart 

allows for an illustration of one variable, but it is possible to split it by a second variable. The 

clustered bar chart uses two variables and shows how the values of these two variables cluster 

together (here as well, it is possible to split the chart by another variable).  
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Bar chart: Function 

 

 

Simple bar chart 

 

1. Go to the Menu bar, choose Graphs\Legacy Dialogs\Bar.  

2. A small window will open, where you click on Define. 

3. A new window called Define Simple Bar: Summaries for Groups of Cases will open. 

4. Tick the option % of cases.   

5. In the left box, all your variables are displayed. Here, you select the variable you 

want SPSS to show a bar chart for. Click on the arrow next to Category Axis.  

6. Click on OK to close the Define Simple Bar: Summaries for Groups of Cases 

window in order to get the results in your Output window.  

 

Clustered bar chart 

 

1. Go to the Menu bar, choose Graphs\Legacy Dialogs\Bar.  

2. A small window will open, where you choose the option Clustered. 

3. Click on Define. 

4. A new window called Define Clustered Bar: Summaries for Groups of Cases will 

open. 

5. Tick the option % of cases.   

6. In the left box, all your variables are displayed. Here, you select the variable you 

want SPSS to show a bar chart for. Click on the arrow next to Category Axis.  

7. In the left box, you select the variable you want the previous variable to be 

clustered by. Click on the arrow next to Define Clusters by. 

8. Click on OK to close the Define Simple Bar: Summaries for Groups of Cases 

window in order to get the results in your Output window.  
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Bar chart: Syntax 

  
 

Simple bar chart 

 

GRAPH 

  /BAR(SIMPLE)=PCT BY VARNAME. 

 

Clustered bar chart 

 

GRAPH 

  /BAR(GROUPED)=COUNT BY VARNAME1 BY VARNAME2. 

 

 

VARNAME    Insert the name of the variable you want to use. 

 

VARNAME1   Insert the name of the variable you want to use as the main variable. 

 

VARNAME2 Insert the name of the variable you want to use as your 

grouping/clustering variable 
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Bar chart: Example (simple bar chart) 

 

 

(Data: SPSS_data1.sav) 

 

GRAPH 

  /BAR(SIMPLE)=PCT BY jobsat. 

 

 

jobsat  Job satisfaction (1=Highly dissatisfied; 2=Somehwat dissatisfied; 

3=Neutral; 4=Somewhat satisfied; 5=Highly satisfied) 



 64 

Output 

This is a bar chart of the variable jobsat. The x-axis (horizontal axis) represents the values of the 

variable. The y-axis (vertical axis) represents the proportion of individuals.   

 

 

 
 

 

Note: To include the exact percentage for each bar, double-click on the graph in the Output 

window. This opens a new window called Chart Editor. Click on Elements in this window’s Menu 

bar and then click on Show Data Labels. A new window called Properties is opened; click on 

Close. Finally, close the Chart Editor to save the changes to the Output window.   
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Bar chart: Example (clustered bar chart) 

 

 

(Data: SPSS_data1.sav) 

 

GRAPH 

  /BAR(GROUPED)=PCT BY jobsat BY gender. 

 

 

jobsat  Job satisfaction (1=Highly dissatisfied; 2=Somehwat dissatisfied; 

3=Neutral; 4=Somewhat satisfied; 5=Highly satisfied) 

gender   Gender (0=Man; 1=Woman) 
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Output 

This is a bar chart of the variable jobsat, grouped by the variable gender. The x-axis (horizontal 

axis) represents the values of the first variable (jobsat). The bars have different colours 

depending on the value of the grouping variable (gender). The y-axis (vertical axis) represents 

the proportion of individuals.   

 

 

 
 

Note: To include the exact percentage for each bar, double-click on the graph in the Output 

window. This opens a new window called Chart Editor. Click on Elements in this window’s Menu 

bar and then click on Show Data Labels. A new window called Properties is opened; click on 

Close. Finally, close the Chart Editor to save the changes to the Output window.  
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4.5 Pie chart 

Quick facts  

Number of variables One (it is possible to split/panel the chart by a second variable) 

Scale of variable(s) Categorical (nominal/ordinal) 

 
This function is used only for categorical variables (i.e. nominal/ordinal) with relatively few 

categories – otherwise the pie chart will get too complex.  
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Pie chart: Function 

 

 

1. Go to the Menu bar, choose Graphs\Legacy Dialogs\Pie.  

2. A small window will open, where you click on Define.  

3. A new window called Define Pie: Summaries for Groups of Cases will open. 

4. Tick the option % of cases.   

5. In the left box, all your variables are displayed. Here, you select the variable you 

want SPSS to show a pie chart for. Click on the arrow next to Define slices by.  

6. Click on OK to close the Define Pie: Summaries for Groups of Cases window in 

order to get the results in your Output window.  
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Pie chart: Syntax 

  

 

GRAPH 

  /PIE=PCT BY VARNAME. 

 

 

VARNAME    Insert the name of the variable you want to use. 
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Pie chart: Example 

 

 

(Data: SPSS_data1.sav) 

 

GRAPH 

  /PIE=PCT BY hometype. 

 

 
hometype   Building type (1=Single family; 2=Multiple family; 3=Townhouse;  

4=Mobile home) 
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Output 

This is a pie chart of the variable hometype. It is a circular diagram, divided into slices, where 

each slice represents the proportion of a specific value of the variable.  

 

 

 
 

 

Note: To include the exact percentage for each slice, double-click on the graph in the Output 

window. This opens a new window called Chart Editor. Click on Elements in this window’s Menu 

bar and then click on Show Data Labels. A new window called Properties is opened; click on 

Close. Finally, close the Chart Editor to save the changes to the Output window. 
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4.6 Histogram 

Quick facts  

Number of variables One (it is possible to split/panel the chart by a second variable) 

Scale of variable(s) Continuous (ratio/interval) 

 
This function is used to illustrate the distribution of continuous variables (i.e. ratio/interval). It 

is possible to include a normal curve in the chart in order to see how the data adheres to a 

normal distribution.  
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Histogram: Function 

 

 

1. Go to the Menu bar, choose Graphs\Legacy Dialogs\Histogram.  

2. A new window called Histogram will open. 

3. In the left box, all your variables are displayed. Here, you select the variable you 

want SPSS to show a histogram for. Click on the arrow next to Variable.  

4. Tick the option Display normal curve to include a normal curve fitted to the data. 

5. Click on OK to close the Histogram window in order to get the results in your 

Output window.  
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Histogram: Syntax 

  

 

GRAPH 

  /HISTOGRAM(NORMAL)=VARNAME. 

 

 

VARNAME    Insert the name of the variable you want to use. 
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Histogram: Example 

 

 

(Data: SPSS_data1.sav) 

 

GRAPH 

  /HISTOGRAM(NORMAL)=ed. 

 

 
ed   Years of education (Min=6; Max=23) 
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Output 

This is a histogram of the variable ed. The x-axis (horizontal axis) represents the values of the 

variable. The y-axis (vertical axis) represents the number of individuals. The black line displays 

the normal curve. SPSS automatically gives you the mean, standard deviation and the total 

number of cases for the variable.   
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4.7 Scatterplot 

Quick facts  

Number of variables Two (it is possible to split/panel the chart by a third variable) 

Scale of variable(s) Continuous (ratio/interval) 

 
This function is used to illustrate how two continuous variables co-vary – or “correlate” – in 

their pattern of values (see Chapter 9 for more detailed information about correlation). If 

increasing values of one variable correspond to increasing values of another variable, it is called 

a positive correlation. If increasing values of one variable correspond to decreasing values of 

another variable, we have a negative correlation. In the graph below, different types of 

correlation are presented. The letter “x” stands for x-axis (horizontal axis) and the letter “y” 

stands for y-axis (vertical axis).   
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Scatterplot: Function 

 

 

1. Go to the Menu bar, choose Graphs\Legacy Dialogs\Scatter/Dot.  

2. A small window will open, where you click on Define.  

3. A new window called Simple Scatterplot will open. 

4. In the left box, all your variables are displayed. Move the variables you want to 

use to the Y Axis and X Axis by highlighting them and clicking on the arrow next to 

the axis you want them on. 

5. Click on OK to close the Simple Scatterplot window in order to get the results in 

your Output window. 
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Scatterplot: Syntax 

  

 

GRAPH 

  /SCATTERPLOT(BIVAR)=XVAR WITH YVAR 

  /MISSING=LISTWISE. 

 

 

XVAR    Insert the name of the first variable you want to use.  

This variable will be chosen for the x-axis. 

 

YVAR    Insert the name of the second variable you want to use.  

This variable will be chosen for the y-axis. 
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Scatterplot: Example 

 

 

(Data: SPSS_data1.sav) 

 

GRAPH 

  /SCATTERPLOT(BIVAR)=age WITH pets 

  /MISSING=LISTWISE. 

 

 
age   Age in years (Min=18; Max=79) 

pets   Number of pets owned (Min=0; Max=21) 
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Output 

This is a scatterplot of the variables age and pets. The x-axis (horizontal axis) represents the 

values of the variable age. The y-axis (vertical axis) represents the values of the variable pets. 

Each dot represents one individual. As can be seen from this scatterplot, these two variables do 

not co-vary. If they would have co-varied, we would typically have seen an oval shape (tilted to 

the left or to the right), where low values for age would correspond to either low or high values 

for pets (and vice versa).   

 

 

 
 

 
Note: To include a reference line, double-click on the graph in the Output window. This opens a 

new window called Chart Editor. Click on Elements in this window’s Menu bar and then click on 

Fit Line at Total. A new window called Properties is opened; click on Close. Finally, close the 

Chart Editor to save the changes to the Output window.  
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4.8 Edit graphs 

As already touched upon, it is possible to modify various elements of the graphs you produce in 

SPSS. In the Output window, just double-click on a graph of choice. This will open the Chart 

Editor. For example, the Chart Editor allows you to change the size and colours of the graph, as 

well as to add data labels (e.g. percentages) and reference lines. Try it out!  
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5. OTHER USEFUL FEATURES IN SPSS 

This part of the guide will describe other features in SPSS that you may need to use when you 

work with your data material.  

 

 

5.1 Recode 

5.2 Compute 

5.3 Select cases 

5.4 If 

5.5 Weight cases 

 



 84 

5.1 Recode 

The recoding command is useful in a lot of different situations. For example: if you have a 

variable that is continuous and you want to create categories, if you have a categorical variable 

where you want to combine categories, if you want to change a binary variable (i.e. a variable 

with only two values, such as gender) to have the opposite coding, or if you want to change any 

value(s) into missing.  
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Recode: Function 

 

 

Imagine that we have a continuous variable with information about age that we want to 

change into age groups.  

 

1. Go to the Menu bar, choose Transform\Recode into different variables.  

2. A new window called Recode into Different Variables will open. 

3. In the left box, all your variables are displayed. You choose the variable that you 

want to recode and the use the arrow to move it to the right box.  

4. Below Output variable, you specify the Name of the new variable.  

If the old variable was called age, the new could be named agecat.  

5. Also specify the Label, for example: “Age category”.  

6. Click on Change.  

7. Click on Old and New Values, whereby a new window called Recode into Different 

Variables: Old and New Values will open. 

8. Here, the basic principle is very easy: you let SPSS know what the old values are, 

and then what you want the new values to be.  

9. In the example of age (that ranges from 18 to 79), we choose the following age 

groups: 18-24; 25-34; 35-49; 50-64; >65 (65 or older).    

Below Range you write “18” through “24” and next to Value (below New Value) 

you write “1”. Then click on Add.  

Below Range you write “25” through “34” and next to Value (below New Value) 

you write “2”. Then click on Add.  

Below Range you write “35” through “49” and next to Value (below New Value) 

you write “3”. Then click on Add.  

Below Range you write “50” through “64” and next to Value (below New Value) 

you write “4”. Then click on Add.  

Below Range you write “65” through “79” and next to Value (below New Value) 

you write “5”. Then click on Add.  

10. Click on Continue and then OK. 

11. Now you will have a new categorical variable based on your continuous variable. 
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Recode: Syntax 

  

 

RECODE VARNAME (OLD AND NEW VALUES) INTO VARNAME_NEW. 

EXECUTE. 

 

 

VARNAME    Insert the name of the old variable.  

 

VARNAME_NEW  Insert the name you want for the new variable. 

 

(OLD AND NEW VALUES)  Specify how you want to transform the values. 

  Some examples: 

  (1 thru 3=1) (4 thru 6=2) (7=3) 

  or 

  (LOWEST thru 10=0) (11 thru HIGHEST=1) 

  or 

  (0=1) (1=2) (2=3) (3=4) (ELSE=SYSMIS) 

  or 

  (99=SYSMIS) (ELSE=COPY) 
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Recode: Example 

 

 

(Data: SPSS_data1.sav) 

 

RECODE age (18 thru 24=1) (25 thru 34=2) (35 thru 49=3) (50 thru 64=4) (65 thru 79=5) 

INTO agecat. 

EXECUTE. 

 

 

age  Age in years (Min=18; Max=79) 
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5.2 Compute 

Compute is another very useful command that works just like an ordinary calculator. For 

example, you can use it when you want to add, subtract, multiply or divide the values of one or 

more variables.  
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Compute: Function 

 

 

Imagine that we have one variable indicating how many saltwater fish people own 

(pets_saltfish) and one variable that indicates how many freshwater fish people own 

(pets_freshfish). We want to create a variable indicating how many fish people own in total 

(pets_fish), i.e. the sum of these two fish variables.  

  

1. Go to the Menu bar, choose Transform\Compute Variable.  

2. A new window called Compute Variable will open.  

3. In the left box (below Target Variable), you chose the name of the new variable, for 

example pets_fish.  

4. In the right box (below Numeric Expression), you write your formula. In this case, you 

would write “pets_saltfish+pets_freshfish”. 

5. Click on OK. 
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Compute: Syntax 

  

 

COMPUTE VARNAME_NEW=EXPRESSION. 

EXECUTE. 

 

 
VARNAME_NEW  Insert the name you want for the new variable. 

 

EXPRESSION  State how the new variable should be created. 

  Some examples: 

  (income_year1+income_year2+income_year3)/3 

  or 

  2005-age 

  or 

  height_cm*0,01 
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Compute: Example 

 

 

(Data: SPSS_data1.sav) 

 

COMPUTE pets_fish=pets_saltfish+pets_freshfish.  

EXECUTE. 

 

 
pets_saltfish      Number of saltwater fish owned (Min=0; Max=8) 

pets_freshfish       Number of freshwater fish owned (Min=0) (Max=16) 
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5.3 Select cases 

Sometimes you may want to select only a specific part of the data set. For example, you may 

want to get descriptive statistics for men and women separately, or for a certain age range, or for 

only non-smokers. In that case, we may use a command called Select Cases. 
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Select cases: Function 

 

 

As an example, we may take the variable gender. Let us pretend we want to limit our 

descriptive statistics only to women.  

 

1. Go to the Menu bar, choose Data\Select Cases.  

2. A new window called Select Cases will open. 

3. Tick the box called If condition is satisfied.  

4. Click on the button called If. 

5. A new window called Select Cases: If will open. 

6. In the left box, all your variables are displayed. You choose the variable that you want to 

select cases for and the use the arrow to move it to the right box.  

7. In this specific example, we choose the variable gender (for which we want to select 

only women). In the right box, we thus write “gender=1” (since women has the value 1 

here).  

8. Click on Continue and then OK. Now, only women are selected (and men are temporarily 

filtered out from the data set). 

9. If you want to “re-select” all cases, you carry out the following steps: 

10. Go to the Menu bar, choose Data\Select Cases.  

11. A new window called Select Cases will open. 

12. Tick the box called All cases.  

13. Click on OK. 

 

When you select cases, a new “filter” variable will be created in your data set. If you delete it, 

the selection will disappear. You can double-check that the selection works by opening up the 

Data view and see that the case numbers for cases you “un-selected” are crossed over. 

 

The selection will be applied to everything you do from the point you select cases and 

onwards, until you remove the selection. In other words, all tables and graphs will be based 

only on the selected individuals until you remove (or change) the selection.  
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Select cases: Syntax 

  

 

Apply selection 

 

USE ALL. 

COMPUTE FILTERNAME=(VARNAME=SPECIFICATION). 

FILTER BY FILTERNAME. 

EXECUTE. 

 

Remove selection 

 

FILTER OFF. 

USE ALL. 

EXECUTE. 

 

 

VARNAME   Insert the name of the variable you want to filter on. 

 

SPECIFICATION Specify which value/values of this variable you want to keep. 

  Some examples: 

  (good_health=1) 

  or 

  (age>17) 

  or 

  (gender=1 & smoking=0) 

 

FILTERNAME Specify what you want to call the new variable that indicates which 

values to keep. 
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Select cases: Example 

 

 

(Data: SPSS_data1.sav) 

 

Apply selection 

 

USE ALL.  

COMPUTE onlywomen=(gender=1).  

FILTER BY onlywomen.  

EXECUTE. 

 

Remove selection 

 

FILTER OFF. 

USE ALL. 

EXECUTE. 

 

 

gender   Gender (0=Man; 1=Woman) 
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5.4 If 

The If command is very similar to the Recode command. Just like Recode, If can be used to create 

new variables – but unlike Recode, you can also use If to condition your data. Put differently, it 

means you can construct a new variable (or change an existing one) given certain properties of 

one or more other variables.  

 

 

Example 

Suppose we ask ten individuals a couple of questions about their smoking behaviour. The first 

question is: “Do you smoke?” (smoke) and the possible responses are: 0=No or 1=Yes. The 

second question is: “How many packs of cigarettes do you usually smoke per week?” 

(number_packs) and the response options are: 1=Less than one pack; 2=1 pack; 3=2 packs; 

4=3-4 packs; 5=5-7 packs; 6=8 or more packs. This is what our data looks like: 

 
 smoke number_packs 
1 0 1 
2 1 5 
3 0 . 
4 1 7 
5 0 . 
6 0 . 
7 0 1 
8 1 2 
9 0 . 
10 0 . 
 

The problem we have is that some of the individuals, who answered that they did not smoke in 

the first question, also gave an answer to the second question (individuals 1 and 7). We want 

to change their value in number_packs to missing (missing is illustrated by a “dot”). That is 

when we use the If command. By just writing the following in our syntax, we fix this problem: 

 

IF (smoke=0) number_packs=$SYSMIS. 

EXECUTE. 
 

 smoke number_packs 
1 0 . 
2 1 5 
3 0 . 
4 1 7 
5 0 . 
6 0 . 
7 0 . 
8 1 2 
9 0 . 
10 0 . 
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If: Syntax 

  

 

IF (CONDITION) OUTCOME. 

EXECUTE. 

 

 

(CONDITION)  Specify how you want to condition your data. 

  Some examples: 

  (education=3) 

  or 

  (gender=0 & smoke=1) 

  or 

  (age>17 & age<66) 

  or  

  SYSMIS(gender) 

 

OUTCOME  Specify how you want result to turn out. 

  Some examples: 

  health=$SYSMIS 

  or 

  working_age=1 

  or 

  (gender=1 & smoking=0) 
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If: Example 

 

 

(Data: SPSS_data1.sav) 

 

We have two variables. The first variable (marital) contains information about marital status 

and the second variable (spoused) contains information about how many years of schooling 

the spouse has. Not all individuals have information for the variable spoused – it is primarily 

missing if the individual does not have a spouse (i.e. unmarried), but in some cases the 

individual is married but did not provide any information about the spouse’s education. So, we 

want to separate these two types of missing by recoding the missing information in spoused to 

the value -1 upon the condition that marital has the value 0 (i.e. unmarried).   

 

IF (marital=0) spoused=-1. 

EXECUTE. 

 

 

marital   Marital status (0=Unmarried; 1=Married) 

spoused   Spouse’s years of education (Min=0; Max=24) 
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5.5 Weight cases 

Optimally, our study sample should be a miniature of the population we are interested in (see 

Section 2.1). This is seldom the case, due to missing data. Missing data may cause some groups in 

the study sample to be smaller (i.e. underrepresented) or bigger (i.e. overrepresented) than they 

actually are. If such problems occur, we cannot draw reliable conclusions from our data. 

However, we can try to correct for the lack of representativeness by using “weights”. This is a 

rather common strategy in surveys. If you use an existing survey material, there are usually 

already designed weight variables in the data set. The guide will not discuss exactly how weights 

are calculated, just why and how they are used in SPSS. 

 

 

Example 

Suppose we have a sample of 1,000 adults who have answered a questionnaire about their 

health. Now we want to collect health data from all children age 10-18 living in these adult 

persons’ household. This gives us a sample of 2,500 children. However, children who live in 

the same household are likely to experience similar living conditions – they do not adequately 

represent the population of children age 10-18 – and we want to adjust for that. Thus, we use a 

weight variable that takes into account this particular sampling of children.     

 

  

To get “un-weighted” cases, remember to de-activate the Weight cases function in SPSS. 
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Weight cases: Syntax 

  

 

Activate the weight 

 

WEIGHT BY VARNAME. 

 

De-activate the weight 

 

WEIGHT OFF. 

 

 

VARNAME  Insert the name of the weight variable. 
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Weight cases: Example 

 

 

(Data: SPSS_data2.sav) 

 

The four-digit weight variable in the data material we use corrects the sample to reflect 

national distributions of key variables. We apply the weight before we run any analyses based 

on the data. 

 

WEIGHT BY weight_var. 
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6. STATISTICAL SIGNIFICANCE 

Outline 

6.1 Hypothesis testing 

6.2 P-values 

6.3 Confidence intervals 

6.4 Discussion 
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6.1 Hypothesis testing  

Quantitative research is commonly about examining relationships between variables (see 

Chapter 11 for a more detailed discussion about those issues). Assuming that all is done 

correctly, data analysis will give us information about the direction of the relationship (i.e. is the 

relationship negative or positive) and the effect size (i.e. how strong the relationship is). These 

are the two most important outcomes of data analysis, but it is not uncommon that research 

inquiry instead focuses on a third point: statistical significance. Statistical significance can be 

seen as an indicator of the reliability of the results – although that is important indeed, it is not 

what exclusively should guide which findings we focus on and which we discard. A fourth issue 

that needs to be taken into account is whether the findings have any practical or clinical 

importance – in order words; do they matter? We therefore suggest the following priority list 

when it comes to how results from data analysis should be interpreted and valued: 

 

Priority list 

1. Direction Is the relationship positive or negative? 

2. Effect size Is the relationship strong or weak? 

3. Statistical significance Is the relationship reliable? 

4. Practical importance Is the relationship relevant? 

 

Hypotheses 

Let us return to the matter of statistical significance: what is it really? Well, for example, if we 

find that cats are smarter than dogs, we want to know whether this difference is “real”. 

Hypothesis testing is how we may answer that question. We start by converting the question 

into two hypotheses: 

 

Hypotheses 

Null hypothesis (H0) There is no difference 

Alternative hypothesis (H1) There is a difference 

 

There is no “law” saying that the null hypothesis is always “no difference” and the alternative 

hypothesis is always “difference”. However, for the null hypothesis, precedence is commonly 

given to the “simpler” (or more “conservative” or “normative”) hypothesis. Here, it is generally 
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simpler to claim that there is no difference in intelligence between cats and dogs than to say that 

there is a difference.  

 

Outcomes 

There are two possible outcomes of hypothesis testing: 

 

Outcomes of hypothesis testing 

Reject H0 in favour of H1 Suggests that the alternative hypothesis may be true (but it does 

not prove it) 

Do not reject H0 Suggests that there is not sufficient evidence against H0 in 

favour of H1 (but it does not prove that the null hypothesis is 

true) 

 

Note that we are never able to decide from hypothesis testing that we should reject or accept H1. 

However, rejecting H0 may lead us to suggest that H1 might be accepted. 

 

Errors 

There are two types of error that may occur in hypothesis testing: a type I error occurs when the 

null hypothesis is rejected although it is true, whereas a type II error occurs when the null 

hypothesis is not rejected although it is false. In the example of cats and dogs, a type I error 

would thus occur if we concluded that there is a difference in the intelligence between cats and 

dogs although that is not true. A type II error, on the other hand, would occur if we concluded 

that there is no difference in intelligence when in fact there is.    

 

Type I and type II errors 

 Conclusion 

  Reject H0 in favour of H1 Do not reject H0 

“Truth” 
H0 Type 1 error Right decision 

H1 Right decision Type II error 

 

Type I errors are generally considered to be more serious that type II errors. Type II errors are 

often due to small sample sizes. 
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Statistical hypothesis testing 

Conducting a statistical hypothesis test is easy to do in statistical software such as SPSS. These 

tests give us a probability value (p-value) that can help us decide whether or not the null 

hypothesis should be rejected. See Section 6.2 for a further discussion about the p-value.  
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6.2 P-values 

The probability value – or p-value – helps us decide whether or not the null hypothesis should 

be rejected. There are some common misunderstandings about p-values: 

 

The p-value is not… 

… the probability that the null hypothesis is true 

… the probability that the alternative hypothesis is false 

… the probability of the occurrence of a type I error (falsely rejecting H0) 

... the probability that replicating the experiment would yield the same conclusion 

… the probability that the finding is a “fluke”  

… an indicator of the size of the effect or importance of the findings 

… determining the significance level 

 

Using the p-value to make this decision, it must first be decided what probability value we find 

acceptable. This is often referred to “the significance level”. If the p-value is below this level, it 

means that we can reject the null hypothesis in favour of the alternative hypothesis, and if the p-

value is above this level, it means that we cannot reject the null hypothesis. The smaller the p-

value, the more convincing is the rejection of the null hypothesis.  

 

Significance levels 

The significance level is set by the individual researcher – it that sense, it is quite arbitrary – but 

there are some levels that are widely used (asterisks are often used to illustrate these levels): 

 

Significance levels 

p<0.05 Statistically significant at the 5 % level * 

p<0.01 Statistically significant at the 1 % level ** 

p<0.001 Statistically significant at the 0.1 % level *** 

 

It should be noted that p<0.10 – statistical significance at the 10 % level – is also a commonly 

used significance level in some fields of research.   

 

Let us return to the example of differences in intelligence between cats and dogs. For instance, if 

we find a difference in intelligence between these types of animal, and the p-value is below 0.05, 
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we may thus state that the null hypothesis (i.e. no difference) is rejected at the 5 % significance 

level. The p-value does not, however, state whether the difference is small or big, or whether 

cats or dogs represent the smarter type of animal (in order to state such things, one would have 

to look at the direction and the effect size).  

 

It should be noted that the p-value is affected by the sample size, which means that a smaller 

sample size often translates to a larger p-value, For example, if you have a data material of 100 

individuals, the effect size has to be quite large (e.g. large income differences income between 

men and women) in order to get small p-values. Conversely, larger sample size makes it easier to 

find small p-values. For example, if you analyse a data material containing the entire population 

of a country, even tiny differences are likely to have small p-values. In other words, the size of 

the sample influences the chances of rejecting the null hypothesis.   
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Practical importance 

As stated earlier in this section, statistical significance – determined by the p-value – is not the 

same as effect size or practical/clinical importance (i.e. if it “matters”). We can use couple of 

examples to illustrate the differences:  

 

 

Example 1  

A pharmaceutical company has developed a drug to cure obesity. During tests of this drug, it 

appears as migraine could be one of the side effects of taking this drug. The null hypothesis 

would here be that there are no differences in the risk of migraine between people who had 

taken the drug and those who have not. The alternative hypothesis would then be that there 

are differences. When we run the analysis on this data material, we see that those who have 

taken the drug have ten times the risk of migraine, but the p-value is above the 5 % level (i.e. 

p>0.05). Thus, we cannot reject the null hypothesis. The difference is however large and is 

likely to have significant impact on people’s lives. It could moreover be the case that a type II 

error has occurred here due to a small sample size.  

 

 

 

Example 2  

In the second example, researchers have gathered data on coffee consumption and happiness 

among 100,000 company employees. The null hypothesis would here be that there are no 

differences in happiness between people who drink coffee and those who do not. The 

alternative hypothesis would be that there are differences. The analysis suggests that there is a 

tiny difference in happiness between those who drink coffee and those who do not, to the 

advantage of the coffee drinkers. The p-value is below 0.05 which suggests that the null 

hypothesis can be rejected at the 5 % level. However, the difference is very small and the 

results may not be very useful.   
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6.3 Confidence intervals 

Confidence intervals (CI) are closely related to the concept of statistical hypothesis testing, but 

they are more informative than p-values since they do not only suggest whether we should 

reject H0 or not, they also provide the range of plausible values.  

 

The “unknown population parameter” 

Before we get into the discussion about confidence intervals, we need to address the concept of 

“unknown population parameter”. A parameter tells us something about a population (while a 

“statistic” tells us something about a sample). The population parameter is thus basically a 

measure of any given population. Examples of population parameters are: the mean height of 

Swedish men, the average intelligence score in 12-year olds, or the mean number of children 

among highly educated people.  The parameter is a fixed value; it does not vary. We seldom have 

information about the entire population, generally only for a part of it (i.e. a sample). In that 

case, the population parameter is unknown. Simply put, a confidence interval is a range that 

includes the “unknown population parameter”. 

 

Limits and levels 

The interval has an upper and a lower bound (i.e. confidence limits). Similar to p-values, 

confidence intervals have “confidence levels” that indicate how certain we can be that the 

interval includes the true population parameter. Confidence intervals are typically stated at the 

5 % level. A 95 % confidence level would thus mean that if we replicated a certain analysis in 

100 samples of the population, we would expect that 95 % of the intervals would include the 

true population parameter. Thus, strictly speaking, it is not correct to say that “with 95 % 

probability, the true population parameter lies within this interval” (because the parameter 

either is or is not within the interval).  

 

Confidence and precision 

When discussing confidence intervals, it is important to be aware of the tension between 

precision and certainty: better precision means being less confident, whereas more confidence 

means less precision. As previously stated, confidence is reflected by the confidence level we 

choose; logically, a higher confidence level means more confidence. The higher the confidence 
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level we choose, the wider the interval gets – and the wider the interval is, the less the precision 

we get.  

 

Confidence versus precision 

Higher confidence level = wider confidence interval = less precision 

Lower confidence level = slimmer confidence interval = more precision 

 

However, it is important to know that the width of the confidence interval is also affected by the 

sample size: the larger the sample size, the slimmer the interval (which means better precision).  

 

Let us take an example to sum up what has been said about confidence intervals so far: We have 

gathered data on all sociology students at Stockholm University and find that their mean age is 

26 years. Instead of highlighting this relatively non-informative fact, we can calculate the 

confidence interval (at the 5 % level). In this case, it is 22-30. Therefore we could make the more 

informative statement that: “with 95 % confidence, we conclude that the mean age of sociology 

students is 22 to 30 years”.   

 

The most common application for confidence intervals as a way of significance testing is when 

we are interested in the difference between two samples. For example: the difference in the 

mean income between men and women, or the difference in the percentage of daily smokers 

among individuals with a lower level of education versus those with a higher level of education. 

In this case, we may look at the “overlap” between the confidence intervals estimated for each 

sample. Suppose that we have an upcoming election and just got the results from the latest poll. 

There are two parties in the race: the green party and the yellow party. The results from the poll 

show that the green party got 42 % of the votes and the confidence interval is 40-44 (at the 5 % 

level). The yellow party got 58 % of the votes and the confidence interval is 54-62 (at the 5 % 

level). What does this tell us? First of all, we can conclude that the yellow party has a greater 

share of votes. Looking at the two confidence intervals, we see that the intervals do not overlap. 

Why is that important? Well, remember that all values in a confidence interval are plausible. 

Hence, if the confidence intervals do not overlap, it means that the estimates (in this case: the 

share of votes) are indeed different given the chosen confidence level (in this case: at the 5 % 

level). However, it should be emphasized that while non-overlap always mirrors a significant 

difference, overlap is not always the same as a non-significance difference.   
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6.4 Discussion 

Now you are maybe wondering; should I use p-values or confidence intervals? Almost all 

disciplines would recommend using both because they capture several dimensions. In the 

following, the advantages and disadvantages of p-values and confidence intervals will be 

described and discussed.  

 

P-value is an important part of research, most likely the heart of it. The p-value is based on “yes-

or no”-questions in which it shows how much evidence we have against the null hypothesis. P-

values are much clearer than confidence intervals and it helps the researcher to make quick 

judgments about his research. Another advantage with the p-value is that it can give the 

difference from a previous specified statistical level. Unfortunately there are misconceptions 

about the p-value among researchers and many disciplines rely on them to draw conclusions 

rather than understanding the background. One of the common mistakes among researchers is 

that they do not further analyze their data in order to ensure that the p-value is not affected by 

other factors. Moreover, p-values cannot alone permit any direct statements about the direction 

or size of difference. In order to make those decisions, one must always look at the confidence 

intervals.  

 

A confidence interval informs the researcher about the power of the study and whether the data 

is compatible, it also shows the likelihood of the null hypothesis being true and that in turn tells 

us how much confidence we have in our findings. The width of the confidence interval indicates 

the precision of the point estimates, in which a small interval indicates a more precise estimate, 

while a wide interval indicates a less precise estimate. The precision is related to the sample size 

and power in which it tells us that the larger sample size we have, the greater, the more precise 

estimates we have. The intervals are useful when having small sample sizes. Normally, small 

studies fail to find statistically significant treatments, when including point estimates with wide 

intervals that include the null value may be consistent and significant. The intervals provide the 

researcher an understanding of the sample size. This can also be a disadvantage when having 

large data because it produces statistically significant results even if the difference between the 

groups is small. Another advantage with the confidence interval is that it can provide means of 

analysis for studies that seek to describe and explain, rather than make decisions about 

treatments effects. A disadvantage with the confidence interval is that it captures several 

elements at the time, in which it may not give precise information like the p-values.  
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As mentioned, a majority of disciplines recommend including both p-values and confidence 

intervals because they capture information in different dimensions. Neither p-values nor 

confidence intervals can prevent biases or other problems but the combination of them provides 

a more flexible approach and highlights new perspectives on the data. Confidence intervals 

permit us to draw several conclusions at the same time and they are more informative about 

sample sizes and point estimates. They are also useful in studies when we have small sample 

sizes. But they are not as precise as p-values when it comes to accepting and rejecting the null 

hypothesis. Thus, when we combine them together we can be more certain.  

 

The figure below shows the advantages and disadvantages when interpreting and drawing 

conclusions with the help of p-values and confidence intervals.  

 

P-values versus confidence intervals 

 P-values Confidence intervals 

Accept/reject   

Degree of support   

Estimate and uncertainty   
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7. COMPARE MEANS 

Outline 

7.1 T-test: independent samples 

7.2 T-test: paired samples 

7.3 One-way ANOVA 
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7.1 T-test: independent samples 

Quick facts  

Number of variables One independent (x) 

One dependent (y) 

Scale of variable(s) Independent: categorical with two values (binary) 

Dependent: continuous (ratio/interval) 

 

The independent samples t-test is a method for comparing the mean of one variable between 

two (unrelated) groups. For example, you may want to see if the income salary of teachers 

differs between men and women, or if the score of a cognitive test differs between children who 

have parents with low versus high education. 

 

 

 

 
Mean income salary among men Mean income salary among women 
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Assumptions 

First, you have to check your data to see that the assumptions behind the independent samples 

t-test hold. If your data “passes” these assumptions, you will have a valid result. However, “real 

world” data is often a bit complicated, and it is not uncommon that at least one of the 

assumptions is violated. While you most commonly will be able to conduct the t-test anyway, it 

is important to be aware of the possible problems.  

 

Checklist  

Continuous 

dependent variable 

Your dependent variable should be continuous (i.e. interval/ratio). 

For example: Income, height, weight, number of years of schooling, 

and so on. Although they are not really continuous, it is still very 

common to use ratings as continuous variables, such as: “How 

satisfied with your income are you?” (on a scale 1-10) or “To what 

extent do you agree with the previous statement?” (on a scale 1-5). 

Two unrelated 

categories in the 

independent variable 

Your independent variable should be categorical and consist of only 

two groups. Unrelated means that the two groups should be 

mutually excluded: no individual can be in both groups. For 

example: men vs. women, employed vs. unemployed, low-income 

earner vs. high-income earner, and so on. 

No outliers An outlier is an extreme (low or high) value. For example, if most 

individuals have a test score between 40 and 60, but one individual 

has a score of 96 or another individual has a score of 1, this will 

distort the test. 
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T-test: independent samples: Function 

 

 

1. Go to the Menu bar, choose Analyze\Compare Means\Independent-Samples T 

Test.  

2. In the left box, all your variables are displayed. You choose the variable you want 

to have as your dependent variable and transfer it to the box called Test 

Variable(s).  

3. Then you choose the variable you want as your independent variable and transfer 

it to the box called Grouping Variable. 

4. Click on Define Groups… 

5. Specify which values the two categories in the independent variable have.  

6. Click on Continue. 

7. Click on OK.  
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T-test: independent samples: Syntax 

  

 

T-TEST GROUPS=INDEPVAR(G1 G2) 

  /MISSING=ANALYSIS 

  /VARIABLES=DEPVAR 

  /CRITERIA=CI(.95). 

 

 

INDEPVAR  Name of the categorical independent variable  

 

(G1 G2) Specify which values the two categories the independent variable 

have. 

 For example: 

 (0 1) 

 or 

  (1 2) 

 

DEPVAR  Name of the continuous dependent variable 
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T-test: independent samples: Example 

 

 

(Data: SPSS_data1.sav) 

 

T-TEST GROUPS=retire(0 1) 

  /MISSING=ANALYSIS 

  /VARIABLES=hourstv 

  /CRITERIA=CI(.95). 

 

 

retire  Retired (0=No; 1=Yes) 

hourstv   Hours spent watching TV last week (Min=0; Max=36) 
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Output/Step 1 

The table called Group Statistics sums the statistics for the variables in the t-test. Here, it can be 

interesting to look at each groups’ mean value. As can be seen, those who are not retired have a 

slightly higher mean value for hours spent watching TV: 19.89 compared to 18.21 for those who 

are retired. 
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Output/Step 2 

The difference between the not-retired group’s and retired group’s mean value is tested in the 

next table (Independent Samples Test).  

 

The first value of interest is the Levene’s Test for Equality of Variances. This test indicates which 

row of the table you are supposed to focus on. Look at the column called Sig. If Levene’s test is 

significant at the 5 % level (p<0.05) then you focus on the row for Equal variances not assumed. 

If the test is not significant (p>0.05), you focus on the row for Equal variances assumed.  

 

Once you have established which row you are supposed to look at, the second value of interest is 

the column called Sig. (2-tailed). A significant p-value here means that the difference between 

the groups is statistically significant. In this case, the p-value is 0.000 which means that the 

difference we found in the table above – which showed that those who are not retired watch 

more TV than those who are retired – is statistically significant (at the 0.1 % level). However, the 

difference is rather small.   
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7.2 T-test: paired samples 

Quick facts  

Number of variables Two (reflecting repeated measurement points) 

Scale of variable(s) Continuous (ratio/interval) 

 

A dependent or “paired” samples t-test is used to see the difference or change between two 

measurement points. For example, you could apply this test to see if the staff’s job satisfaction 

has improved after their boss has taken a course in “socio-emotional skills” compared to before, 

or if the rate of cigarette smoking in certain schools has declined since the introduction of a new 

intervention programme.  

 

For the independent samples t-test, you were supposed to have two groups for which you 

compared the mean. For the paired samples t-test, you instead have two measurements of the 

same variable, and you look at whether there is a change from one measurement point to the 

other.  

 

 

 

 

 
Happiness score before summer vacation Happiness score after summer vacation 
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Assumptions 

First, you have to check your data to see that the assumptions behind the paired samples t-test 

hold. If your data “passes” these assumptions, you will have a valid result. However, “real world” 

data is often a bit complicated, and it is not uncommon that at least one of the assumptions is 

violated. While you most common will be able to conduct the t-test anyway, it is important to be 

aware of the possible problems. 

 

Checklist 

Continuous variables Your two variables should be continuous (i.e. interval/ratio). For 

example: Income, height, weight, number of years of schooling, and 

so on. Although they are not really continuous, it is still very 

common to use ratings as continuous variables, such as: “How 

satisfied with your income are you?” (on a scale 1-10) or “To what 

extent do you agree with the previous statement?” (on a scale 1-5). 

Two measurement 

points 

Your two variables should reflect one single phenomenon, but this 

phenomenon is measured at two different time points for each 

individual. 

Normal distribution Both variables need to be approximately normally distributed. Use a 

histogram to check (see Section 4.6). 

No outliers in the 

comparison between 

the two 

measurement points  

For example, if one individual has an extremely low value at the first 

measurement point and an extremely high value at the second 

measurement point (or vice versa), this will distort the test. Use a 

scatterplot to check (see Section 4.7). 
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T-test: paired samples: Function 

 

 

1. Go to the Menu bar, choose Analyze\Compare Means\Paired Samples T Test. 

2. In the left box, all your variables are displayed. You choose the variable you want 

to have as your dependent variable and transfer it to the box called Paired 

variables.  

3. Then you choose the variable you want as your independent variable and transfer 

it to the box called Paired variable.  

4. Click on OK. 
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T-test: paired samples: Syntax 

  

 

T-TEST PAIRS=MEASURE1 WITH MEASURE2 (PAIRED) 

  /CRITERIA=CI(.9500) 

  /MISSING=ANALYSIS. 

 

 

MEASURE1  Insert the name of the variable containing information about the 

first measurement point.  

 

MEASURE2  Insert the name of the variable containing information about the 

second measurement point. 

 

 

 

 



 125 

T-test: paired samples: Example 

 

 

(Data: SPSS_data1.sav) 

 

T-TEST PAIRS=unempl_03 WITH unempl_05 (PAIRED) 

  /CRITERIA=CI(.9500) 

  /MISSING=ANALYSIS. 

 

 
unempl_03  Unemployment days in 2003 (ranges from 0 to 365) 

unempl_05  Unemployment days in 2005 (ranges from 0 to 365) 
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Output/Step 1 

The table called Paired Samples Statistics shows the statistics for the variables. For example, it 

shows the mean value for each of the two measurement points. In the current example, we see 

that the mean number of unemployment days is lower in 2003 (mean=8.12) than in 2005 

(mean=11.31).  

 

 

 
 

 

Output/Step 2 

The table called Paired Samples Test shows the results from the actual t-test. The first column – 

Mean – shows that the mean difference between unemployment days in 2003 and 

unemployment days in 2005 is -3.190 (this difference is actually just derived from taking 11.31 

minus 8.12). The last column – Sig. (2-tailed) – shows the p-value for this difference. If the p-

value is smaller than 0.05, the test suggests that there is a statistically significant difference (at 

the 5 % level). Thus, here we can conclude that there is a statistically significant increase in 

unemployment days from 2003 to 2005. 
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7.3 One-way ANOVA 

Quick facts  

Number of variables One independent (x) 

One dependent (y) 

Scale of variable(s) Independent: categorical (nominal/ordinal) 

Dependent: continuous (ratio/interval) 

 

The one-way ANOVA is very similar to the independent samples t-test. The difference is that the 

one-way ANOVA allows you to have more than two categories in your independent variable. For 

example, you can compare how many cups of coffee people drink per day depending on if they 

have a low-stress, medium-stress, or high-stress job. Or you can see if the number of days of 

paternity leave differs between fathers in Sweden, Denmark, Norway and Finland. However, it is 

important to remember that the one-way ANOVA does not tell you exactly which groups are 

different from each other; it only tells you that at least two of the groups differ in terms of the 

outcome.  

 

 

 

 

 

 

 
Mean number of ice cones per 

week during May in Swedish 

children ages 5-10  

Mean number of ice cones per 

week during June in Swedish 

children ages 5-10 

Mean number of ice cones per 

week during July in Swedish 

children ages 5-10 
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Assumptions 

First, you have to check your data to see that the assumptions behind the one-way ANOVA hold. 

If your data “passes” these assumptions, you will have a valid result. However, “real world” data 

is often a bit complicated, and it is not uncommon that at least one of the assumptions is 

violated. While you most common will be able to conduct the test anyway, it is important to be 

aware of the possible problems.  

 
Checklist  

Continuous 

dependent variable 

Your dependent variable should be continuous (i.e. interval/ratio). 

For example: Income, height, weight, number of years of schooling, 

and so on. Although they are not really continuous, it is still very 

common to use ratings as continuous variables, such as: “How 

satisfied with your income are you?” (on a scale 1-10) or “To what 

extent do you agree with the previous statement?” (on a scale 1-5). 

Two or more 

unrelated categories 

in the independent 

variable 

Your independent variable should be categorical (i.e. nominal or 

ordinal) and consist of two or more groups. Unrelated means that 

the groups should be mutually excluded: no individual can be in 

more than one of the groups. For example: low vs. medium vs. high 

educational level; liberal vs. conservative vs. socialist political views; 

or poor vs. fair, vs. good vs. excellent health; and so on. 

No outliers An outlier is an extreme (low or high) value. For example, if most 

individuals have a test score between 40 and 60, but one individual 

has a score of 96 or another individual has a score of 1, this will 

distort the test. 
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One-way ANOVA: Function 

 

 

1. Go to the Menu bar, choose Analyze\Compare Means\One-way ANOVA.  

2. In the left box, all your variables are displayed. You choose the variable you want 

to have as your dependent variable and transfer it to the box called Dependent 

list. 

3. You also choose the variable you want as your independent variable and transfer 

it to the box called Factor.  

4. Go to the box Option. Tick the boxes called Descriptive, Homogeneity of variance 

test, Brown-Forsythe, Welch and Means Plot.  

5. Click on Continue and then on OK.  
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One-way ANOVA: Syntax 

  

 
ONEWAY DEPVAR BY INDEPVAR 

  /STATISTICS OPTIONS  

  /MISSING ANALYSIS. 

 
 

DEPVAR  Name of the continuous dependent variable 

  It is possible to list more than one dependent variable 

 

INDEPVAR  Name of the categorical independent variable  

 

OPTIONS  List the options you want to be included 

  For example:  

  DESCRIPTIVES 
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One-way ANOVA: Example 

 

 

(Data: SPSS_data1.sav) 

 

ONEWAY income BY bfast 

  /STATISTICS DESCRIPTIVES HOMOGENEITY WELCH 

  /MISSING ANALYSIS. 

 

 

income  Household income in thousands of dollars (Min=9; Max=1073) 

bfast   Preferred breakfast (1=Energy bar; 2=Oatmeal; 3=Cereal) 
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Output/Step 1 

The table called Paired Samples Statistics shows the descriptive statistics for the variables, 

including the mean value of the dependent variable (income) for each category of the 

independent variable (bfast).  

 

 

 
 

Output/Step 2 

The table called Test of Homogeneity of Variances shows the results from a Levene’s test for 

testing the assumption of equal variances. Put differently, this test is concerned with whether or 

not the variances of the categories are different from one another. The column called Sig. shows 

the p-value for this test. If the p-value is larger than 0.05, we can use the results from the 

standard ANOVA test. However, if the p-value is smaller than 0.05, it means that the assumption 

of homogeneity of variance is violated and we cannot trust the standard ANOVA results. Instead, 

we focus on the results from the Welch ANOVA. Note, however, than both these tests produce so-

called F statistics.  
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Output/Step 3 

If the p-value for the Levene’s test had been larger than 0.05 in this example, we would have 

focused on the table called ANOVA. The column called Sig. shows whether or not we have a 

statistically significant difference in our dependent variable (income) between the categories of 

the independent variable (bfast). A p-value that is smaller than 0.05 would suggest that there is 

indeed a statistically significant difference (at the 5 % level).  

 

 
 

Output/Step 4 

Since the p-value for the Levene’s test in this example was smaller than 0.05, we instead focus on 

the next table: Robust Tests of Equality of Means. The same principle as for the standard ANOVA 

test applies here: if the p-value (in the column called Sig.) is smaller than 0.05, it means that we 

have a statistically significant difference (at the 5 % level) in our dependent variable (income) 

between the categories of the independent variable (bfast). 
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8. CHI SQUARE 

Outline 

8.1 Chi-square 
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8.1 Chi-square 

Quick facts  

Number of variables Two 

Scale of variable(s) Categorical (nominal/ordinal) 

 

There are two different forms of the chi-square test: a) The multidimensional chi-square test, 

and b) The goodness of fit chi-square test. It is the first form that will be covered in this part of 

the guide. The second form is discussed in Section 14.3.  

 

The multidimensional chi-square test assesses whether there is a relationship between two 

categorical variables. For example, you want to see if young women smoke more than young 

men. The variable gender has two categories (men and women) and, in this particular case, the 

variable smoking consists of the categories: no smoking, occasional smoking and frequent 

smoking. The multidimensional chi-square test can be thought of as a simple crosstable where 

the distribution of these two variables is displayed: 

 

 No smoking Occasional smoking Frequent smoking 

Men (age 15-24) 85 % 10 % 5 % 

Women  (age 15-24) 70 % 20 % 10 % 

 

Assumptions 

First, you have to check your data to see that the assumptions behind the chi-square test hold. If 

your data “passes” these assumptions, you will have a valid result. 

  

Checklist 

Two or more 

unrelated categories 

in both variables 

Both variables should be categorical (i.e. nominal or ordinal) and 

consist of two or more groups. Unrelated means that the groups 

should be mutually excluded: no individual can be in more than one 

of the groups. For example: low vs. medium vs. high educational 

level; liberal vs. conservative vs. socialist political views; or poor vs. 

fair, vs. good vs. excellent health; and so on. 
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Chi-square: Function 

 

 
1. Go to the Menu bar, choose Analyze\Descriptive Statistics\Crosstabs.  

2. A small window will open, where you see one big box and three small boxes. In 

the left box, all your variables are displayed.  

3. Here, you choose two variables: one to be the Row variable, and one to be the 

Column variable.  

4. Move your variables to the Row and Column boxes by using the arrows.  

5. Click on Statistics. 

6. Tick the box for Chi-square.  

7. Click on Continue. 

8. Tick the box called Suppress tables located below the box containing all variables. 

9. Click on OK. 
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Chi-square: Syntax 

  

 
CROSSTABS 

  /TABLES= VARNAME1 BY VARNAME2 

  /FORMAT=NOTABLES 

  /STATISTICS=TYPE  

  /COUNT ROUND CELL. 

 

 
VARNAME1    Insert the name of the first variable you want to use.  

This variable will be chosen for rows. 

 

VARNAME2    Insert the name of the second variable you want to use.  

This variable will be chosen for columns. 

 
/FORMAT=NOTABLES  Insert this if you do not want SPSS to produce a cross table (in that 

case you will only get the results from the chi-square test. 

 

 TYPE   Choose the type of statistics you want to produce.  

  For example: 

  CHISQ 
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Chi-square: Example 

 

 

(Data: SPSS_data1.sav) 

 

CROSSTABS 

  /TABLES=bfast BY gender 

  /FORMAT=NOTABLES 

  /STATISTICS=CHISQ  

  /COUNT ROUND CELL. 

 

 

bfast   Preferred breakfast (1=Energy bar; 2=Oatmeal; 3=Cereal) 

gender   Gender (0=Man; 1=Woman) 
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Output 

The table called Chi-Square Tests shows the results from the chi-square test for the variables 

bfast and gender. Here, we look at the row called Pearson Chi-Square and the column Asymp. 

Sig. (2-sided) to see the p-value for the test. A p-value smaller than 0.05 indicates that there is a 

statistically significant association (at the 5 % level) between the two variables in the test, 

whereas a p-value larger than 0.05 suggests that there is not a statistically significant 

association. Since the p-value in this example is 0.891, we can conclude that bfast and gender are 

not associated with one another at a statistically significant level.  
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9. CORRELATION ANALYSIS 

Outline 

9.1 Correlation analysis 
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9.1 Correlation analysis 

Quick facts  

Number of variables Two or more 

Scale of variable(s) Continuous (ratio/interval) 

 

A correlation analysis tests the relationship between two continuous variables in terms of: a) 

how strong the relationship is, and b) in what direction the relationship goes. The strength of the 

relationship is given as a coefficient (the Pearson product-moment correlation coefficient, or 

simply Pearson’s r) which can be anything between -1 and 1. But how do we know if the 

relationship is strong or weak? This is not an exact science, but here is one rule of thumb: 

 

Strength  

Negative Positive  

-1 1 Perfect 

-0.9 to -0.7 0.7 to 0.9 Strong 

-0.6 to -0.4 0.4 to 0.6 Moderate 

-0.3 to -0.1 0.1 to 0.3 Weak 

0 0 Zero 

 

Thus, the coefficient can be negative or positive. These terms, “negative” and “positive”, are not 

the same as good and bad (e.g. excellent health or poor health; high income or low income). They 

merely reflect the direction of the relationship.  

 

Direction  

Negative As the values of Variable 1 increases, the values of Variable 2 decreases 

Positive As the values of Variable 1 increases, the values of Variable 2 increases 

 

Note however that correlation analysis does not imply anything about causality: Variable 1 does 

not cause Variable 2 (or vice versa). The correlation analysis only says something about the 

degree to which the two variables co-vary.  
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Assumptions 

First, you have to check your data to see that the assumptions behind the correlation analysis 

hold. If your data “passes” these assumptions, you will have a valid result. 

 

 Checklist  

Two continuous 

variables 

Both variables should be continuous (i.e. interval/ratio). For 

example: Income, height, weight, number of years of schooling, and 

so on. Although they are not really continuous, it is still rather 

common to use ratings as continuous variables, such as: “How 

satisfied with your income are you?” (on a scale 1-10) or “To what 

extent do you agree with the previous statement?” (on a scale 1-5). 

Linear relationship 

between the two 

variables 

There needs to be a linear relationship between your two variables. 

You can check this by creating a scatterplot (described in Section 

4.7).  

No outliers An outlier is an extreme (low or high) value. For example, if most 

individuals have a test score between 40 and 60, but one individual 

has a score of 96 or another individual has a score of 1, this will 

distort the test. 
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Correlation analysis: Function 

 

 
1. Go to the Menu bar, choose Analyze\Correlate\Bivariate.  

2. A new window called Bivariate Correlations will open. 

3. In the left box, all your variables are displayed. Highlight the variables for which 

you want to test the correlation, and then transfer them to Variables.  

4. Click on OK. 

 

Note that it is possible to include more than two variables, and in that case you will get 

correlation coefficients for each pair of variables. 

 

 

 

 

 



 144 

Correlation analysis: Syntax 

  

 

CORRELATIONS 

  /VARIABLES=VARNAMES 

  /PRINT=TWOTAIL NOSIG 

  /MISSING=PAIRWISE. 

 

 

VARNAMES  Insert the names of at least two variables 
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Correlation analysis: Example 

 

 

(Data: SPSS_data1.sav) 

 

CORRELATIONS 

  /VARIABLES=jobsat age 

  /PRINT=TWOTAIL NOSIG 

  /MISSING=PAIRWISE. 

 

 

jobsat  Job satisfaction (1=Highly dissatisfied; 2=Somehwat dissatisfied; 

3=Neutral; 4=Somewhat satisfied; 5=Highly satisfied) 

age   Age (Min=18; Max=79) 
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Output 

The table called Correlations shows the results from the correlation analysis of the two variables 

jobsat and age. Note that the table is a matrix, meaning that it can be read from left to right or 

from the top to the bottom. Here, we focus on the row called Pearson Correlation. Of course, the 

correlation between jobsat and jobsat is perfect (r=1), and so is the correlation between age and 

age (r=1). Now, remember that an increasing value for age means that the individual is older, but 

an increasing value for jobsat means that the individual is less satisfied with his or her job. The 

correlation coefficient for jobsat and age is 0.413, which is positive. In other words: as the age 

increases, job satisfaction decreases. Concerning the strength of the correlation, 0.413 can be 

said to be moderate.  

 

Sig. (2-tailed) shows the p-value for the correlation. A p-value smaller than 0.05 suggests that 

the correlation is statistically significant (at the 5 % level). SPSS also includes a significance test 

at the 1 % level, indicated by the asterisks (**) presented next to the correlation coefficient.  
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10. FACTOR ANALYSIS 

Outline 

10.1 Factor analysis 

10.2 Cronbach’s alpha 
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10.1 Factor analysis 

Quick facts  

Number of variables Two or more 

Scale of variable(s) Continuous (ratio/interval) or approximately continuous 

 

There are two general types of factor analysis: exploratory factor analysis and confirmatory 

factor analysis. It is the first type that will be covered here. The main feature of exploratory 

factor analysis (hereafter referred to as “factor analysis”) is that is enables us to investigate the 

underlying structure in the pattern of correlations between a number of variables (often 

referred to as “items”). If we have a large number of variables, we can thus investigate if these 

variables represent a smaller number of factors – or “dimensions”. Before getting into factor 

analysis in more detail, just a cautionary note: it is easy to let the data guide all your decisions, 

but do not forget what theory tells you before making these decisions! 

 

 

 

Variable 1 

 

Variable 2 

 

Variable 3 

 

Variable 4 

 

Variable 5 

 

Variable 6 
 

 

 

Factor 1 

Factor 2 
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Assumptions 

First, you have to check your data to see that the assumptions behind the factor analysis hold. If 

your data “passes” these assumptions, you will have a valid result. 

 

Checklist  

Ratio/interval/ordinal 

variables 

Your variables should be continuous (i.e. interval/ratio) or ordinal 

(but still approximately continuous). For example: Income, height, 

weight, number of years of schooling, or ratings. 

Linear associations The variables in the factor analysis should be associated with each 

other in a linear fashion (use scatter plots to check, see Section 

4.7). 

Sample size Factor analysis requires rather large samples. However, 

recommendations on this topic vary greatly. Some 

recommendations highlight the absolute sample size (here, lower 

limits range from n=100 to n=500) whereas others says that 

subject-to-variable ratio is important (and here, ratios from 2:1 to 

20:1 are suggested). 

No outliers An outlier is an extreme (low or high) value. For example, if most 

individuals have a test score between 40 and 60, but one 

individual has a score of 96 or another individual has a score of 1, 

this will distort the test. 

 

Suppose that we have asked a bunch of individuals, six questions about their health. We conduct 

a factor analysis to see how many dimensions these questions reflect: do all questions reflect 

only one dimension (namely “health”) or can they be categorised into two or more dimensions 

(i.e. different types of health)? 
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Pre-tests 

First, we have to find out if it is a good idea to conduct a factor analysis at all. Here, you may use 

two tests to help you decide: 

 

Factor analysis or not? 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy 

The Bartlett’s Test of Sphericity 

 

The test called Kaiser-Meyer-Olkin Measure of Sampling Adequacy (in short: the KMO test) 

reflects the sum of partial correlations relative to the sum of correlations. It varies between 0 

and 1, where a value closer to 1 is better. It has been suggested to use 0.5 as a minimum 

requirement. Thus, if the value is lower than 0.5, factor analysis may be inappropriate.  

 

The Bartlett’s Test of Sphericity tests the hypothesis that the correlation matrix is an identity 

matrix; if it is an identity matrix then there would be no correlations between the variables (and 

that is obviously not very good). Thus, the test needs to be statistically significant (i.e. p<0.05) so 

we are able to reject this hypothesis. If we cannot reject it, it would be inappropriate to conduct 

a factor analysis.  
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Number of factors 

So, suppose that we find that it is suitable to conduct a factor analysis. How do we ascertain how 

many factors/dimensions there are in our data? Well, there are several different ways to do this.  

 

Determining the number of factors 

Eigenvalue>1 Eigenvalues are indicators of the variance explained by a factor. 

Using the rule “eigenvalue is greater than one” is very common. 

The reasoning behind this rule is that a factor should account for 

at least as much variance as any single variable. Thus, the average 

of all eigenvalues is one, and the factor analysis should thus 

extract factors that have an eigenvalue greater than this average 

value. 

Scree plot In a scree plot, factors have their eigenvalues plotted alongside 

the y-axis (i.e. vertical axis) in the order or magnitude. Factors 

explaining large amounts of variable appear to the left, whereas 

factors explaining little variance are aligned to the right. The 

somewhat weird task is here to “locate the elbow”. This means to 

identify the number of factors stated before the line starts 

becoming flat. 

Explained variance This refers to the amount of variation that the factor explains. 

Some suggest that 90 % should be used as a cut-off point, whereas 

others go as low as 50 %. 

 



 152 

Factor loadings 

Once we have decided on the number of factors, we retrieve the “factor loadings”. A factor 

loading is basically a correlation coefficient (see Chapter 9) and, thus, it varies between -1 and 

+1 (where a value closer to -1 or +1 indicates a stronger correlation). Factor loadings are given 

for each variable, for each factor separately. In other words, a factor loading shows how strongly 

a certain variable correlates with the given factor. There are no exact rules for deciding on when 

a loading is strong enough, but one suggested rule of thumb is below -0.5 or above 0.5. However, 

sometimes a variable has strong loadings for more than one factor (called “cross-loading”). This 

can for example happen if you have not extracted enough factors, or if the factors are correlated. 

Sometimes a variable has weak loadings for all factors; this may suggest that this variable is 

weakly related to all other variables or that you need to explore an additional factor (or maybe 

even exclude this specific variable). 
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Rotation 

A factor analysis has the most interpretative value when: 1) Each factor loads strongly on only 

one factor; 2) Each factor shows at least three strong loadings; 3) Most loadings are either high 

or low; and 4) We get a “simple” factor structure. Rotation is a way of maximizing high loadings 

and minimizing low loadings so that we get the simplest factor structure possible. There are two 

main types of rotation: 

 

Rotation  

Orthogonal Assumes that the factors are uncorrelated 

Examples of sub types: equamax, quartimax and varimax 

Oblique Assumes that the factors are correlated 

Examples of sub types: direct oblimin and promax 

 

Thus, the orthogonal rotation is based on the assumption that the factors are not correlated to 

each other, i.e. that the different factors represent different unrelated dimensions of what you 

are examining. This is not always the case. For example, if you have several variables measuring 

health, and find one factor that reflects physical health and another one reflecting psychological 

health, it may not be reasonable to assume that physical and psychological health two unrelated 

dimension. In that case, you need to change the type of rotation to oblique.  
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Factor analysis: Function 

 

 
1. Go to the Menu bar, choose Analyze\Dimension Reduction\Factor.  

2. A new window called Factor Analysis will open. 

3. In the left box, all your variables are displayed. Highlight the variables that you 

want to include in the analysis, and then transfer them to Variables.  

4. To order Kaiser-Meyer-Olkin Measure of Sampling Adequacy and Bartlett’s Test of 

Sphericity: click on Descriptives, tick the box called KMO and Bartlett’s test of 

sphericity, and then click on Continue. 

5. To order a scree plot: click on Extraction, tick the box called Scree plot, and then 

click on Continue. 

6. If you for some reason want to tell SPSS exactly how many factors you want, go to 

Extraction, tick the box called Fixed number of factors, state the preferred number 

of factors, and then click on Continue. 

7. To change the rotation of the factor analysis: click on Rotation, tick the box for the 

preferred type of rotation (None; Varimax; Direct Oblimin; Quartimax; Equamax; 

or Promax), and then click on Continue. Note that you will only get rotated factor 

loadings if SPSS identifies at least two factors. 

8. Click on OK. 

 

 

 

 

 

 

 

 
 



 155 

Factor analysis: Syntax 

  
 

FACTOR 

  /VARIABLES VARLIST1 

  /MISSING LISTWISE  

  /ANALYSIS VARLIST2 

  /PRINT INITIAL TESTNAME EXTRACTION ROTATION 

  /PLOT PLOTNAME 

  /CRITERIA MINEIGEN(1) ITERATE(25) 

  /EXTRACTION PC 

  /CRITERIA ITERATE(25) 

  /ROTATION ROTATIONTYPE 

  /METHOD=CORRELATION. 

 

 

VARLIST1  List all the variables you want to analyse 

 

VARLIST2  List all the variables you want to analyse (same as VARLIST1) 

 

TESTNAME  Name of the test you want to order 

  For example: 

  KMO (KMO and Bartlett’s test of sphericity) 

 

ROTATION  Add this here if you want to rotate your analysis 

 

PLOTNAME  Name of the plot you want to order 

  For example: 

  EIGEN (Scree plot) 

 

/CRITERIA ITERATE(25) Add this here if you are rotating your analysis 

 

ROTATIONTYPE Name of the type of rotation you want to use 

  For example: 

  VARIMAX 
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Factor analysis: Example 

 

 

(Data: SPSS_data2.sav) 

 

FACTOR 

  /VARIABLES imp_ideas imp_rich imp_secure imp_good imp_help imp_success imp_risk     

  imp_behave imp_environ imp_trad 

  /MISSING LISTWISE  

  /ANALYSIS imp_ideas imp_rich imp_secure imp_good imp_help imp_success imp_risk     

  imp_behave imp_environ imp_trad 

  /PRINT INITIAL KMO EXTRACTION ROTATION 

  /PLOT EIGEN 

  /CRITERIA MINEIGEN(1) ITERATE(25) 

  /EXTRACTION PC 

  /CRITERIA ITERATE(25) 

  /ROTATION VARIMAX 

  /METHOD=CORRELATION. 

 

 

imp_ideas  Important to think up new ideas 

imp_rich  Important to be rich 

imp_secure  Important living in secure surroundings 

imp_good  Important to have a good time 

imp_help  Important to help the people 

imp_success  Important being very successful 

imp_risk  Important with adventure and taking risks 

imp_behave  Important to always behave properly 

imp_environ  Important looking after the environment 

imp_trad  Important with tradition 

 

(1=Very much like me; 2=Like me; 3=Somewhat like me; 4=Not like 

me; 5=Not at all like me) 
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Output/Step 1 

The first step is to look at the table called KMO and Bartlett’s Test. The estimate in the first row 

is the result from the KMO test. The value here is 0.792, which suggests that the factor analysis is 

appropriate. The estimate in the last row is the result from the Bartlett’s Test of Sphericity. The 

p-value here is 0.000, which also suggests that factor analysis is appropriate. 
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Output/Step 2 

The second step is to look at the table called Total Variance Explained. There is one row for each 

factor-solution (called Component). With regard to Initial Eigenvalues and the column called 

Total, the results show a suitable cut-off between two and three factors since the three-factor 

solution has an eigenvalue below 1. Thus, this suggests that a two-factor solution is preferable. 

Looking at the column called Cumulative %, the results show that the two-factor solution 

together explain approximately 46 % of the variance. That is not a high percentage but we may 

conclude that it is acceptable.  

 

One important thing to know is that SPSS automatically chooses to proceed with the solution 

that consists of the most factors that has an eigenvalue greater than one (in this case, the two-

factor solution).   
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Output/Step 3 

The third step is to look at the graph called Scree Plot. Eigenvalues are presented alongside the 

y-axis and the number of the component (i.e. factor) is presented alongside the x-axis. Here we 

can see that the eigenvalues are getting much flatter (i.e. the elbow!) starting at the three-factor 

solution. Thus, once again it can be argued that we should go with the two-factor solution.  
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Output/Step 4 

The fourth step is to look at the table called Rotated Component Matrix. This table shows the 

factor loading for each variable and for each of the two factors separately.  

 

 

 
 

 

We identify for with factor each variable has the higher loading, we can conclude that the two 

factors contain the following variables: 

 

Factor 1 

Important living in secure surroundings (security) 

Important to help the people (benevolence) 

Important to always behave properly (conformity) 

Important looking after the environment (universalism) 

Important with tradition (tradition) 

 

Factor 2 

Important to think up new ideas (self-direction) 

Important to be rich (power)  
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Important to have a good time (hedonism)  
Important being very successful (achievement)  
Important with adventure and taking risks (stimulation) 

 

The ten variables used in this factor analysis actually stem from a theory of human values, 

developed by Schwartz. According to this theory, the variables should be categorised in the 

following way: 

 

Conservation: security, tradition, and conformity 

Openness to change: self-direction, stimulation, and hedonism 

Self-enhancement: power and achievement 

Self-transcendence: benevolence and universalism 

 

If we compare the theoretical categories with the factors derived from factor analysis, we 

actually see that the Factor 1 includes all variables theoretically associated with conservation 

and self-transcendence, whereas Factor 2 includes all variables theoretically associated with 

openness to change and self-enhancement. What do we do with this information then? Well, we 

need to examine possible reasons as to why the factor analysis did not reveal the same factors as 

the theory proposes. If we find no apparent problems with the empirics (e.g. missing data, 

problems with the questionnaire itself, etc.) we may suggest that the theory needs to be 

modified. At least it is important to discuss the differences between the theory and the empirics.  

 
Sometimes, we do not have a clear theory guiding the factor analysis and, thus, we have no a 

priori understanding about which factors that are reasonable to expect. In that case, it is 

common practice to focus on a factor solution with good properties (i.e. clear factor structure 

and high factor loadings). It is always a trade-off between theory and empirics: if theory has 

precedence over empirics, we may be more disposed to accept lower factor loadings.     
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A note on composite measures (indices) 

A common reason for conducting a factor analysis is that we want to make a composite measure 

(i.e. an index) of a set of variables. If these variables all fall into one single factor (with acceptable 

factor loadings), that is safe to do. If they clearly fall into different factors, a single index for these 

variables should not be calculated. Possible solutions could be to exclude variables not fitting 

into the factor of choice. Another solution is to create more than one index, reflecting different 

dimensions of the concept you focusing on.  
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10.2 Cronbach’s alpha 

Quick facts  

Number of variables Two or more 

Scale of variable(s) Continuous (ratio/interval) or approximately continuous 

 

The common application of the Cronbach’s alpha is when we have a composite measure – i.e. an 

index – and want to see if the variables included in the index actually reflect the same underlying 

factor/dimension. Formally speaking, the Cronbach's alpha is a measure of internal consistency; 

how closely related a number of items are as a group. The coefficient ranges between 0 and 1. A 

high alpha value indicates that items measure an underlying factor. However, it is not a 

statistical test but a test of reliability/consistency. 

 

One important thing to note is that the Cronbach’s alpha is affected by the number of variables: 

including a higher number of variables automatically increases the alpha value to some extent.  

 

Rule of thumb 

There are many rules of thumb with regard to what is considered a good or bad alpha value. 

Generally, an alpha value of at least 0.7 is considered acceptable. 

 

Alpha values  

Between 0.7 and 1.0 Acceptable 

Below 0.7 Not acceptable 
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Cronbach’s alpha: Function 

 

 
1. Go to the Menu bar, choose Analyze\Scale\Reliability Analysis.  

2. A new window called Reliability Analysis will open. 

3. In the left box, all your variables are displayed. Highlight the variables that you 

want to include in the analysis, and then transfer them to Items.  

4. If you want to see what would happen to the alpha value if you would exclude any 

specific variable, click on Statistics. Tick the box called Scale if item deleted, and 

then click on Continue. 

5. Click on OK. 
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Cronbach’s alpha: Syntax 

  

 

RELIABILITY 

  /VARIABLES=VARLIST 

  /SCALE('ALL VARIABLES') ALL 

  /MODEL=ALPHA 

  /SUMMARY=TOTAL. 
 

 

VARLIST  List all the variables you want to analyse 

 

/SUMMARY=TOTAL Add this if you want to see how the alpha value changes if a certain 

variable was excluded 
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Cronbach’s alpha: Example 

 

 

(Data: SPSS_data2.sav) 

 

RELIABILITY 

  /VARIABLES=imp_secure imp_help imp_behave imp_environ imp_trad 

  /SCALE('ALL VARIABLES') ALL 

  /MODEL=ALPHA 

  /SUMMARY=TOTAL. 
 

 

imp_secure  Important living in secure surroundings 

imp_help  Important to help the people 

imp_behave  Important to always behave properly 

imp_environ  Important looking after the environment 

imp_trad  Important with tradition 

 

(1=Very much like me; 2=Like me; 3=Somewhat like me; 4=Not like 

me; 5=Not at all like me) 
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Output/Step 1 

The first step is to look at the table called Reliability Statistics. Here, you see the alpha value. In 

this case, it is 0.716.  
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Output/Step 2 

The second step is to look at the table called Item-Total Statistics. In the column for Cronbach’s 

Alpha if Item Deleted, you see what happens to the alpha value if any of the specific variables 

would be excluded from the test. In this specific case, the exclusion of any variable would 

actually decrease the alpha value – hence, it is better to keep all the variables in the index. If the 

results had been the opposite (i.e. the alpha value would increase if a certain variable was 

excluded), we may have considered removing that variable from the index – but any such 

decisions should always be evaluated against what is stipulated by the theory you use.  
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11. X, Y AND Z 

Outline 

11.1 X and Y 

11.2 Z: confounding, mediating and moderating variables 

 

We talk a lot about variables in this guide, because variables are the cornerstones of quantitative 

data materials and quantitative data analysis. Other terms are sometimes used instead of 

“variables” – such as “indicators”, “measures” or “items” – but they basically reflect the same 

thing.  

 

Associations 

In many types of analysis – such as when we compare means or conduct regression analysis – 

we are interested in the association between two (or more) variables. The term “association”, or 

“relationship”, reflects the assumption that the variables are related to one another in some way. 

Basically, that means that the variables are correlated.  

 

Effects 

We often assume that the one variable has an “effect” on another variable. Here, we are talking 

about statistical effect, not causal effect. In other words, while we may find that one of the 

variables has a statistical effect on the other variable, it does not mean that the first variable 

causes the second variable. A phrase commonly used in statistics to capture this is: “correlation 

does not imply causation”.  
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X, Y and Z 

Variables play different roles in the analysis. Researchers often use various terms to distinguish 

between these roles. Here, we will try to shed some light on the terms that are used. 

 

Variables 

X Independent variable; Exposure; Predictor 

Y Dependent variable; Outcome 

Z Covariate; Confounder; Mediator; Moderator; Effect modifier 
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11.1 X and Y 

 

 

 

 

 

If read about a variable being “independent”, an “exposure”, or a “predictor” – what does that 

mean? Basically, it means that you think that this variable has an (statistical) effect on another 

variable. For the sake of simplicity, let us just call this type of variable “x”. The other variable – 

the one that x is assumed to affect – is called “dependent” variable or “outcome”. Again, to make 

it simpler, we can call it “y”.  

 

 

Some examples 

Smoking (x) -> Lung cancer (y) 

Unemployment (x) -> Low income (y) 

Yoga lessons (x) -> Lower stress levels (y) 

 

 

The examples presented above may suggest that it is easy to know which variable is x and which 

is y, but this is not always the case. Sometimes we deal with more complex issues, such as the 

association between health and educational attainment: does a lower educational attainment (x) 

lead to worse health (y) or does poor health (x) result in lower educational attainment (y)? In 

cases like that you need to think about that is more reasonable, and what previous literature and 

theory would say about the issue at hand.  

 

 

x y 
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11.2 Z: confounding, mediating and moderating variables 

 

 

 

 

 

The association – between x and y – that we are most interested in is often called “main 

association”. This is the focus of our analysis. However, sometimes there are other variables that 

we might find important for this main association. Strictly speaking, those variables are also 

called “x” (or “covariates”) but for clarity we will label them “z”. There are three important types 

of z-variables that are common in data analysis: 

 

Types of “z” 

Confounder Both x and y are affected by z  

Mediator A part of the association between x and y goes through z 

Moderator Z affects the association between x and y 

 

Confounding variables 

 

 

 

 

 

 

 

 

 

A confounder is a variable that influences both the x-variable and the y-variable and, thus, makes 

you think that there is an actual relationship between x and y (but it is due to z). Put differently, 

x y 

z? 

x y 

z 
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the confounder distorts the analysis. Suppose that we find that people who consume a lot of 

coffee (x) have an increased risk of lung cancer (y). A probable confounder could be cigarette 

smoking (y): smokers drink more coffee and have greater risk of lung cancer.  

 

In data analysis, we commonly want to get rid of the confounding effects – in that context, we 

often talk about “controlling” or “adjusting” for confounders.  

 

Mediating variables 

 

 

 

 

 

 

 

 

 

A mediator is a variable that is influenced by the x-variable and influences the y-variable. Thus, 

some (it could be a little or a lot) of the effect of x on y is mediated through z. For example, let us 

say that we are interested in the association between parents’ educational attainment (x) and 

children’s success on the labour market (y). It could be reasonable to assume that the 

educational attainment of the parents (x) influences children’s own educational attainment (z), 

which in turn affects their following success on the labour market (y). 

 

In data analysis, we often talk about “explaining” an association by the inclusion of certain 

mediating variables. Particularly when one has a data material that consists of information 

collected across several points in time (i.e. longitudinal or life course data), it is common to talk 

about mediation as “pathways” or “mechanisms”. It should however be highlighted that 

mediation analysis has become increasingly criticized (for statistical reasons that we will not 

discuss here). 

 

x y 

z 
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Moderating (or effect modifying) variables 

 

 

 

 

 

 

 

 

 

A moderator (or effect modifier) is a variable that influences the very association between the x-

variable and the y-variable. Thus, the association between x and y looks different depending on 

the value of z. Suppose that we are interested in the association between unemployment (x) and 

ill-health (y). Here, it could be reasonably to assume that men’s and women’s health is affected 

differently by unemployment – in that case, gender would be a moderating variable (z).  

 

In data analysis, moderating variables are examined through something called “interaction 

analysis” (see Chapter 17).  

 

 

 

 

 

 

 

x y 

z 

 



12. PREPERATIONS FOR REGRESSION ANALYSIS 

Outline 

12.1 What type of regression should be used? 

12.2 Dummies 

12.3 Standardization: z-scores 

12.4 Analytical strategy 

12.5 Missing data 

12.6 From study sample to analytical sample 
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12.1 What type of regression should be used? 

There are many different types of regression analysis. Some of the most common types are 

included in this guide: linear, logistic, ordinal regression, multinomial and Poisson. Which one 

you should choose depends on your outcome (y). 

 

Outcome (y) Type of regression 

Nominal with two categories, i.e. dichotomous (binary) Logistic regression 

Nominal with more than two categories, i.e. polytomous Multinomial regression 

Ordinal Ordinal regression 

Continuous (ratio/interval)  Linear regression 

 

Just to underline it one more time: the type of regression you choose depends on your outcome 

(y). However, your x-variable(s) can take on any form – they can be categorical (i.e. 

nominal/ordinal) or continuous (i.e. ratio/interval). If you include only one x-variable in your 

regression analysis, this is called “simple” (or “bivariate”) regression analysis. If you include two 

or more x-variables in your regression analysis, this is called “multiple” regression analysis. In 

multivariate regression analysis, it is possible to mix different types of x-variables: you can thus 

use both categorical and continuous x-variables.  
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12.2 Dummies 

When we conduct regression analysis – regardless of the type – we can only include x-variables 

that are continuous (ratio/interval) or binary (i.e. they consist of only two values). A binary 

variable is sometimes called “dichotomous”, “binomial” or “dummy”. If we have a categorical 

variable with more than two values, such as in the example below, we need to “trick” the 

regression analysis to correctly analyse those variables. To do this, we create one dummy for 

each category of the variable: 

 

 

Example 

  Categories  Dummy 

Educational attainment 1=Compulsory  1=Compulsory, 0=Other 

  2=Upper secondary  1=Upper secondary, 0=Other 

  3=University  1=University, 0=Other 

 

 

In the regression analysis, all dummies for the specific variable should be included as x-

variables, except one. The dummy that you exclude – and it is your own choice which one you 

exclude – will be the “reference category”. The other dummies will be compared to the dummy 

that is excluded. Creating dummies is much easier using syntax that through the menus, but if 

you want to use the menus, you need to go through Recode Into Different Variables separately 

for each dummy.   

 

A note on the choice of reference category 

There are many different ways of choosing a reference category: 

 

Choosing a reference category 

The largest category, because we want a stable group to compare the other categories to 

The group in the middle, to represent the average 

The “best off” category – if increasing values of the outcome is more negative 

The “worst off” category – if increasing values of the outcome is more positive 

Note: never choose a very small group – you may end up with very strange estimates! 
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Dummies: Syntax 

  
 

For each dummy separately 

 

RECODE VARNAME (OLD AND NEW VALUES) INTO DUMMYNAME. 

EXECUTE. 

 

 
VARNAME    Insert the name of the original variable 

  For example: 

  income 

 

DUMMYNAME  Insert the name of the dummy variable 

  For example: 

  income_low 

  or 

  income_middle 

  or 

  education_high 

 

(OLD AND NEW VALUES)  Specify how you want to transform the values 

  Some examples: 

  (1=1) (2=0) (3=0) 
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Dummies: Example 

 

 

(Data: SPSS_data1.sav) 

 

RECODE hometype (1=1) (2=0) (3=0) (4=0) INTO hometype_singlefam. 

RECODE hometype (1=0) (2=1) (3=0) (4=0) INTO hometype_multiplefam. 

RECODE hometype (1=0) (2=0) (3=1) (4=0) INTO hometype_townhouse. 

RECODE hometype (1=0) (2=0) (3=0) (4=1) INTO hometype_mobilehome. 

EXECUTE. 

 

 

hometype   Building type (1=Single family; 2=Multiple family; 3=Townhouse;  

4=Mobile home) 
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12.3 Standardization: z-scores 

The standard score – or the z-score – is very useful when we have continuous (ratio/interval) 

variables with different normal distributions. For example, if we have one variable called income 

(measured as annual household income in Swedish crowns) and another variable called years of 

schooling (measured as the total number of years spent in the educational system), these 

variables obviously have very different distributions. Suppose we want to compare which one – 

income or years of schooling – has a larger statistical effect on our outcome. That is not possible 

using the variables we have. The solution is to standardize (i.e. calculate z-scores for) these two 

variables so that they are comparable. 

 

Z-scores are expressed in terms of standard deviations from the mean. What we do is that we 

take a variable and “rescale” it so that it has a mean of 0 and a standard deviation of 1. Each 

individual’s value on the standardized variable indicates its difference from the mean of the 

original (unstandardized) variable in number of standard deviations. A value of 1.5 would thus 

suggest that this individual has a value that is 1½ standard deviations above the mean, whereas 

a value of -2 would suggest that this individual has a value that is 2 standard deviations below 

the mean.  
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Standardization: z-scores: Function 

 

 

1. Go to the Menu bar, choose Analyze\Descriptive Statistics\Descriptives.  

2. This will open up a new window called Descriptives. 

3. A small window will open, where you see two boxes.  

4. In the left box, all your variables are displayed. Here you choose the variable(s) 

you want to standardize. 

5. Click on the small arrow between the boxes to transfer the variable(s) to the box 

to the right.  

6. Tick the box called Save standardized values as variables.  

7. Click on OK to generate a standardized version of the variable(s).  
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Standardization: z-scores: Syntax 

  

 

DESCRIPTIVES VARIABLES=VARNAME 

  /SAVE. 

 

 

VARNAME    Insert the name of the variable you want to use. 

 

/SAVE     Insert this if you want to produce z-scores for your variable. 
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Standardization: z-scores: Example 

 

 

(Data: SPSS_data1.sav) 

 

DESCRIPTIVES VARIABLES=unempl_03 age  

  /SAVE. 

 

 
unempl_03  Unemployment days in 2003 (ranges from 0 to 365) 

age   Age in years (Min=18; Max=79) 
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12.4 Analytical strategy 

Regression analysis is of course about data, but it is also about design. The way in which you 

think your variables are related needs to be translated into an “analytical strategy” (or 

“modelling strategy”. A good way to start is to make a drawing with boxes and arrows: each 

variable is put into one box and then you put simple-headed or double-headed arrows between 

the boxes to illustrate how the variables are associated to one another.  

 

A good analytical strategy should reflect the aim of the study. Suppose we are interested in the 

association between children’s cognitive ability and educational attainment in adulthood. To 

examine this association is thus the aim of the study. We think that this association may be 

confounded by parents’ educational attainment and mediated by children’s school marks. 

Moreover, we suspect that the association may look different depending on the child’s gender. 

The research questions can thus be formulated as:  

 

Question 1. Is children’s cognitive ability associated with educational attainment in 

adulthood?  

Question 2. If so, is this association confounded by parents’ educational attainment? 

Question 3. To what extent is the association between children’s cognitive ability and 

educational attainment in adulthood mediated by school marks in childhood? 

Question 4. Is there any gender difference in the association between children’s cognitive 

ability and educational attainment in adulthood? 

 

Accordingly, these are the variables we need to include in our analysis: 

 

x  Cognitive ability in childhood 

y  Educational attainment in adulthood 

z (confounder) Parents’ educational attainment 

z (mediator)  School marks in childhood 

z (moderator) Child’s gender 
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And this is how we may choose to illustrate our analytical strategy: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Often, we want to break down our analysis in different steps – or “regression models”. Each 

model commonly reflects one research question. In the present example, we would have a whole 

set of models that would include different variables: 

 

Model 1 Cognitive ability in childhood (x) and educational attainment in adulthood (y) 

Model 2 Cognitive ability in childhood (x), educational attainment in adulthood (y), and 

parents’ educational attainment (z) 

Model 3 Cognitive ability in childhood (x), educational attainment in adulthood (y), and 

school marks in childhood (z) 

Model 4 Cognitive ability in childhood (x), educational attainment in adulthood (y), and 

gender (z) 

 

 

 

  

 

Cognitive ability 
in childhood  

(x) 

Gender  
(z: moderator) 

Educational 
attainment in 

adulthood  
(y) 

Parents’ 
educational 
attainment  

(z: confounder) 

School marks  
in childhood  
(z: mediator) 
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12.5 Missing data 

As we discussed earlier (see Section 2.1), it is common that some individuals in our data 

material have missing information for one or more of the variables. Missing data is sometimes 

called “attrition” (particularly in register data) and sometimes “non-reponse” (particularly in 

survey/questionnaire data). Attrition or non-response can be external or internal: 

 

External or internal? 

External For some reason, the individuals are not included in the register data (they have 

immigrated, died, moved, are imprisoned, etc.) or do not participate in the 

survey (they decline, are too sick, cannot be reached, etc.). 

Internal For some reason, the individual has no information for a specific variable or a set 

or variables (they missed a page of the questionnaire, they refuse to answer 

specific questions, etc.). 

 

As shown above, there are many reasons for missing data. If the missingness is problematic or 

not, depend on which type of missing data we have. In statistical analysis, there are three types 

of missing data: 

 

Types of missing data 

MCAR Missing Completely At Random: 

The probability of missing data is unrelated to both observed and unobserved data; it 

is completely by chance alone 

MAR Missing At Random:  

The probability of missing data is unrelated to unobserved data but may be related to 

observed data 

NMAR Missing Not At Random:  

The probability of missing data is related to unobserved data 

 

This was probably a bit confusing – let us exemplify the differences between MCAR, MAR and 

NMAR. Suppose we examine the distribution of income in the Swedish population. If missing 

data were MCAR, it means that the missingness is unrelated to both observed data (e.g. gender, 

employment status) and unobserved data (e.g. lower income does not influence the risk of 

missingness). If missing data were MAR, it would mean that missingness could be related to 

other variables in the data set, but the probability of missingness is not increased by certain 
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values of the variable itself (e.g. individuals having lower incomes). Finally, if individuals who 

had certain values of the variables itself were more likely to be missing, we would have MNAR. 

 

How may we deal with missing data? 

There are several ways of assessing whether missingness is MCAR, MAR or MNAR, but we are 

not going to get into advanced statistical stuff here. The most important advice is that you have 

to know your data well: produce descriptive statistics for your study variables to see the extent 

of missingness in the data material. Obviously, if you have a small number of individuals in your 

data material, a couple of missing values would have more serious consequences than if you 

have a couple of missing values in a data material based on the total population of a country.  

 

A sound strategy to map out and illustrate potential problems with missingness is first to find 

out anything you can about the reasons for external attrition. Why are some individuals not 

included in your data set? Is it likely that they similar in any important way or is the missingness 

due to technical reasons? Then you get into the issue of internal attrition. Analysing internal 

attrition is simply called “attrition analysis” or “non-response analysis”. What you do here is to 

pick one or more variables for which all individuals in the study sample has information, such as 

gender, age, or some other socio-demographic variable. Produce descriptive statistics (choice of 

type of descriptive statistics depends on the measurement scale) for those variables, for all 

individuals in the study sample. Then you produce descriptive statistics for the same variables, 

but now only for the individuals in the analytical sample (Section 12.6 describes how to define an 

analytical sample).  

 

For example, our study sample contains 10,000 individuals. Approximately 49 % are men and 51 

% are women. The mean age is 45 years. Due to missing data on some of the variables we want 

to include in our analysis, our analytical sample is reduced to 9,451 individuals. In this sample, 

46 % are men and 54 % are women. The mean age is 47 years. You can illustrate this in a simple 

descriptive table: 

 

 Study sample (n=10,000) Analytical sample (n=9,451) 

Gender   

   Man 49 % 46 % 

   Woman 51 % 54 % 

 Age (mean) 45 years 47 years 
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If we thus compare the distribution of gender and age in the study sample with the distribution 

of gender and age in the analytical sample, we can conclude that women and older individuals 

are more likely to be included in our analysis. This is information that could be important to 

have when we interpret our results. 
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12.6 From study sample to analytical sample 

This section is an attempt to connect the two previous sections. It is like this: we often split our 

analysis in different steps or models. Thus, different models include different sets of variables; 

and different variables have different amount of missing data. The total number of individuals 

may thus vary across models, and this makes it difficult to compare the results between the 

models. In other words, we must ensure that all our analyses – and all steps of analysis – are 

based on the same individuals. These individuals represent our “analytical sample” (or “effective 

sample”). Put differently: our analytical sample is defined as only those individuals who have 

valid information (i.e. no missing) for all variables we use in our analysis.  

 

It is good to first check the amount of missing data for each of the variables included in the 

analysis, to see if any certain variable is particularly problematic in terms of missingness. If a 

variable has serious problems with missingness, it could be wise to exclude it from the analysis 

(but it depends on how important the variable is to you).  

 

The analytical sample should not only be the basis for regression analysis, but all other statistical 

tests and descriptive statistics should also be based on the analytical sample. Moreover, make 

sure to state the total number of individuals in the heading of each table and each figure. It could 

look something like this: 

 

 

Some examples 

Table 1. Descriptive statistics for all study variables (n=9,451). 

Figure 5. Histogram of annual income (n=9,451). 

Table 3. The association between educational attainment and mortality. Results from logistic 

regression analysis, separately for men (n=4,701) and women (n=4,750). 
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The “pop” variable 

It is rather easy to define an analytical sample in SPSS. First, you need to determine exactly 

which variables are included in the analysis (i.e. all variable you use, not all variables in the data 

material). They should be properly recoded as you want them, and all missing values should be 

coded as actually missing in SPSS (Recode, see Section 5.1). Second, you create a “pop” variable – 

“pop” stands for population – through the Compute (see Section 5.2). Third, you make a 

frequency table of the pop variable. The individuals who have the highest value on this variable 

constitute your analytical sample. Finally, you use this pop variable to restrict everything you do 

from that point onwards, to include only those with the desired value on the pop variable (Select 

cases, see Section 5.3). 
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From study sample to analytical sample: Syntax 

  
 

COMPUTE NAME=nvalid(VARLIST). 

EXECUTE. 

 

 
NAME Insert the name you want to give the variable indicating the 

analytical sample. 

 

VARLIST  Insert the names of all study variables, separate them by comma. 

  For example: 

  gender, age, marital_status, income 

 

Note: SPSS will calculate the number of valid values with this command. If you include a variable 

list with four variables, the pop variable will range between zero and four. Individuals with the 

value four will have valid information for all variables and thus constitute your analytical sample 

(and subsequently, you select only these individuals through the select-cases command). If you 

would have included nine variables, the pop variable will range between zero and nine. In that 

case, individuals with the value nine would have constituted your analytical sample.  
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From study sample to analytical sample: Example 

 

 

(Data: SPSS_data1.sav) 

 

COMPUTE pop=nvalid(gender, age, marital, jobsat, unempl_03, unempl_05). 

EXECUTE. 

 

 

 

 

 



 193 

13. LINEAR REGRESSION 

Outline 

13.1 Simple linear regression 

13.2 Multiple linear regression 

13.3 Model diagnostics 

 

 

Before you begin, make sure that you have defined your analytical sample correctly (see Section 

12.6).  



 194 

Introduction 

Linear regression is used when y is continuous (ratio/interval; see Section 2.2). If you have only 

one x, it is called “simple” linear regression, and if you have more than one x, it is called 

“multiple” linear regression. Regardless of whether you are doing a simple or a multiple 

regression, the x-variables can be categorical (nominal/ordinal) and/or continuous 

(ratio/interval). 

 

Key information from linear regression 

1. Direction  

Negative Minus sign before the B coefficient 

Positive No minus sign before the B coefficient 

2. Effect size  

B coefficient How much does y change for every one-unit increase in x? 

3. Statistical significance  

P-value p<0.05 Statistically significant at the 5 % level 

p<0.01 Statistically significant at the 1 % level 

p<0.001 Statistically significant at the 0.1 % level 

95 % Confidence intervals Interval includes 0: 

Statistically significant at the 5 % level 

Interval does not include 0:  

Statistically non-significant at the 5 % level 

 

B coefficients (B) 

A linear regression analysis describes the linear association between x and y. The effect that x 

has on y is estimated through a “Beta coefficient” – or “B coefficient”. The B coefficient is 

interpreted in the following way: “for every one-unit increase in x, y increases/decreases by [the 

B coefficient]”. Accordingly, if you get a negative B coefficient (below 0), you say: “for every one-

unit increase in x, y decreases by [the B coefficient]”, and if you get a positive B coefficient 

(above 0), you say: “for every one-unit increase in x, y increases by [the B coefficient]”. What the 

B coefficient actually stands for – and whether we can say that an effect is small or big – depends 

on the values of x and y.  
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P-values and confidence intervals 

In linear regression analysis you can of course get information about statistical significance, in 

terms of both p-values and confidence intervals. The p-values and the confidence intervals will 

give you partly different information, but: they are not contradictory. If the p-value is below 

0.05, the 95 % confidence interval will not include 0 (statistical significance at the 5 % level), 

and if the p-value is above 0.05, the 95 % confidence interval will include 0 (statistical non-

significance at the 5 % level).  

 

Note that when you look at the p-value, you can rather easily distinguish between the 

significance levels (i.e. you can directly say whether you have statistical significance at the 5 % 

level, the 1 % level, or the 0.1 % level). When it comes to confidence intervals, SPSS will by 

default choose 95 % level confidence intervals (i.e. statistical significance at the 5 % level). For 

some analyses, it is however possible to change the confidence level for the intervals. For 

example, you may instruct SPSS to show 99 % confidence intervals instead. 

 

R-Squared 

You also get information about something called “R-Squared” or “R2”. This term refers to 

amount of the variation in y that is explained by the inclusion of the x-variable. The R2 value 

ranges between 0 and 1 – a higher value means a higher amount of explained variation. 

Generally speaking, the higher the R2 values, the better the model fits the data (i.e. the model has 

better predictive ability).  

 

Simple versus multiple regression models 

The difference between simple and multiple regression models, is that in a multiple regression 

each x-variable’s effect on y is estimated while taking into account the other x-variables’ effects 

on y. We then say that these other x-variables are “held constant”, or “adjusted for”, or 

“controlled for”. Because of this, multiple regression analysis is a way of dealing with the issue of 

“confounding” variables, and to some extent also “mediating” variables (see Section 11.2). 

 

It is highly advisable to run a simple linear regression for each of the x-variables before 

including them in a multiple regression. Otherwise, you will not have anything to compare the 

adjusted B coefficients with (i.e. what happened to the B coefficients when other x-variables 
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were included in the analysis). Including multiple x-variables in the same model usually (but not 

always) means that the associations are reduced in strength – which would of course be 

expected if the x-variables overlapped in their effect on y.      

 

Define your analytical sample 

Before you begin, make sure that you have defined your analytical sample correctly (see Section 

12.6).  
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13.1 Simple linear regression 

Quick facts  

Number of variables One dependent (y) 

One independent (x) 

Scale of variable(s) Dependent: continuous (ratio/interval) and normally distributed 

Independent: categorical (nominal/ordinal) or continuous 

(ratio/interval) 
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Simple linear regression: Function 

 

 
1. Go to the Menu bar, choose Analyze\Regression\Linear.  

2. A new window called Linear Regression will open.   

3. In the left box, all your variables are displayed. You choose the variable you want 

to have as your dependent variable (y) and transfer it to the box called 

Dependent.  

4. Then you choose the variable you want as your independent variable (x) and 

transfer it to the box called Independent(s). 

5. Click on Statistics. 

6. Tick the box for Confidence Intervals. 

7. Click on Continue. 

8. Click on OK to get the results in your Output window.  
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Simple linear regression: Syntax 

  
 

REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS CI(95) R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN  

  /DEPENDENT DEPVAR 

  /METHOD=ENTER INDEPVAR. 

 

 

DEPVAR  Name of the dependent variable. 

 

INDEPVAR  Name of the independent variable. 
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Simple linear regression with a continuous x 

 

Example 1  

Suppose we want to examine the association between unemployment days (x) and income (y) 

by means of a simple linear regression analysis. Unemployment days are measured as the total 

number of days in unemployment during a year, and ranges from 0 to 365. Income is 

measured in thousands of Swedish crowns per month and ranges between 20 and 40 

thousands of Swedish crowns. Let us say that we get a B coefficient that is -0.13. That would 

mean that for each one-unit increase in unemployment days, income would decrease by 0.13. 

Given the values of our variables, we can conclude that for each additional day in 

unemployment, monthly income would decrease by 130 SEK on average.  

 

 

 

Example 2  

In another example, we may examine the association between intelligence scores (x) and years 

of schooling (y). Intelligence scores are measured by a series of tests that render various 

amounts of points, and ranges between 20 and 160 points. Years of schooling is measured as 

the total number of years spent in the educational system and ranges from 9 to 20 years. Here, 

we get a B coefficient that is 0.08. Given the values of our variables, we can conclude that for 

each additional point on the intelligence variable, the number of years spent in the educational 

system increases by 0.08 on average (corresponding to approximately one month).  
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Simple linear regression with a continuous x: Example 

 

 

(Data: SPSS_data1.sav) 

 

REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS CI(95) R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN  

  /DEPENDENT hourstv 

  /METHOD=ENTER age. 

 

 

hourstv   Hours spent watching TV last week (Min=0; Max=36) 

age   Age in years (Min=18; Max=79) 
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Output/Step 1 

The first step is to look at the table called Model Summary. Here you focus on the column for 

Adjusted R Square, which reflects the so-called “R2”. The value here reflects how much of the 

variation in the dependent variable (hourstv) that is explained by the variation in the 

independent variable (age). Just move the decimal two places to the right to be able to interpret 

the R2 value as percentages. Accordingly, we see that age explains 0.1 % of the variation in hours 

spent watching TV (that is obviously very little).  
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Output/Step 2 

The second step is to look at the table called Coefficients. Start focusing on the column called B; 

this is the B coefficient. The B coefficient in this example is -0.011, which first of all means we 

have a negative association between age and hourstv. Based on what we know about the values 

of these two variables, we can conclude the following: for every one year increase in age, the 

number of hours spent watching TV decreases by 0.011 hours.  

 

The column called Sig. shows the p-value. It is 0.010, which means that the association between 

age and hourstv is statistically significant (at the 1 % level). Then we look at the part of the table 

called 95 % Confidence Interval for B. This gives us the lower confidence limit (Lower Bound) 

and the upper confidence limit (Upper Bound). In the present example, the lower limit is -0.019 

whereas the upper limit is -0.003. The interval does not include the null value (which is always 

x=0 in linear regression) and, thus, the results are statistically significant (at the 5 % level).  
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Simple linear regression with a binary x 

 

Example 1  

Suppose we want to examine the association between gender (x) and income (y) by means of a 

simple linear regression analysis. Gender has the values 0=Man and 1=Woman. Income is 

measured in thousands of Swedish crowns per month and ranges between 20 and 40 

thousands of Swedish crowns. Let us say that we get a B coefficient that is -1.3. That would 

mean that for every one-unit increase in gender – i.e. changing from the category of men to the 

category of women – income would decrease by 1.2. Given the values of our variables, we can 

conclude that women have 1200 SEK less in monthly income compared to men.  

 

 

 

Example 2  

Suppose we want to examine the association between having small children (x) and the 

number of furry pets (y) by means of a simple linear regression analysis. Having small children 

is measured as either 0=No or 1=Yes. The number of furry pets is measured as the number of 

cats, dogs or other furry animals living in the household, and ranges between 0 and 10. Let us 

say that we get a B coefficient that is 0.98. That would mean that for every one-unit increase in 

having small children – i.e. going from not having small children to having small children – the 

number of furry pets would increase by 0.98. Given the values of our variables, we can 

conclude that those who have small children have almost one more furry pet compared to 

those who do not have small children.  
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Simple linear regression with a binary x: Example 

 

 

(Data: SPSS_data1.sav) 

 

REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS CI(95) R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN  

  /DEPENDENT hourstv 

  /METHOD=ENTER marital. 

 

 

hourstv   Hours spent watching TV last week (Min=0; Max=36) 

marital   Marital status (0=Unmarried; 1=Married) 
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Output/Step 1 

The first step is to look at the table called Model Summary. Here you focus on the column for 

Adjusted R Square, which reflects the so-called “R2”. The value here reflects how much of the 

variation in the dependent variable (hourstv) that is explained by the variation in the 

independent variable (marital). Just move the decimal two places to the right to be able to 

interpret the R2 value as percentages. Accordingly, we see that marital status explains 0.1 % of 

the variation in hours spent watching TV (that is obviously not much).  
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Output/Step 2 

The second step is to look at the table called Coefficients. Start focusing on the column called B; 

this is the B coefficient. The B coefficient in this example is 0.403, which first of all means we 

have a positive association between marital and hourstv. Based on what we know about the 

values of these two variables, we can conclude the following: the number of hours spent 

watching TV is 0.403 higher among those who are married compared to those who are 

unmarried.  

 

The column called Sig. shows the p-value. It is 0.006, which means that the association between 

marital and hourstv is statistically significant (at the 1 % level). Then we look at the part of the 

table called 95 % Confidence Interval for B. This gives us the lower confidence limit (Lower 

Bound) and the upper confidence limit (Upper Bound). In the present example, the lower limit is 

0.116 and the upper limit is 0.690. The interval does not include the null value (which is always 

x=0 in linear regression) and, thus, the results are statistically significant (at the 5 % level).  
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Simple linear regression with a categorical x (dummies) 

 

Example 1  

We want to investigate the association between educational attainment (x) and income (y) by 

means of a simple linear regression analysis. Educational attainment has the values: 

1=Compulsory education, 2=Upper secondary education, and 3=University education. Income 

is measured in thousands of Swedish crowns per month and ranges between 20 and 40 

thousands of Swedish crowns. Since our x-variable is categorical with more than two 

categories, we have to create dummies (one 0/1 coded variable for each category). We choose 

those with compulsory education as our reference category, meaning that this dummy will not 

be included in the analysis. We will thus get one B coefficient for upper secondary education 

and one B coefficient for university education. Each of these should be compared to the 

reference category. Let us say that we get a B coefficient for upper secondary education that is 

2.1 and we get a B coefficient for university education that is 3.4. First of all, we can conclude – 

based on the direction of the estimates – that higher educational attainment is associated with 

higher income. More specifically, those with upper secondary education have (on average) 

2100 SEK higher income compared to those with compulsory education, and those with 

university education have (on average) 3400 SEK higher income compared to those with 

compulsory education. 
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Example 2  

Suppose we are interested in the association between family type (x) and children’s average 

school marks (y). Family type has three categories: 1=Two-parent household, 2=Joint custody, 

and 3=Single-parent household. Children’s average school marks range from 1 to 5. Since our 

x-variable is categorical with more than two categories, we have to create dummies (one 0/1 

coded variable for each category). We choose children living in a two-parent household as our 

reference category, meaning that this dummy will not be included in the analysis. We will thus 

get one B coefficient for joint custody and one B coefficient for single-parent household. Each 

of these should be compared to the reference category. The analysis results in a B coefficient of 

-0.1 for joint custody and a B coefficient of -0.9 for single-parent household. That would mean 

that children living in joint custody families have a 0.1 point lower score for average school 

marks compared to those living in two-parent households. Moreover, children living in single-

parent households have a 0.9 point lower score for average school marks compared to those 

living in two-parent households. 
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Simple linear regression with a categorical x (dummies): Example 

 

 

(Data: SPSS_data1.sav) 

 

REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS CI(95) R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN  

  /DEPENDENT income 

  /METHOD=ENTER agecat_2534 agecat_3549 agecat_5064 agecat_6579. 

 

 

income   Household income in thousands of dollars (Min=9; Max=1073) 

agecat_1824   (0=No; 1=Yes)  

agecat_2534   (0=No; 1=Yes) 

agecat_3549   (0=No; 1=Yes) 

agecat_5064   (0=No; 1=Yes) 

agecat_6579   (0=No; 1=Yes) 
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Output/Step 1 

The first step is to look at the table called Model Summary. Here you focus on the column for 

Adjusted R Square, which reflects the so-called “R2”. The value here reflects how much of the 

variation in the dependent variable (income) that is explained by the dummies of the 

independent variable (agecat). Just move the decimal two places to the right to be able to 

interpret the R2 value as percentages. Accordingly, we see that the dummies of agecat explain 

12.1 % of the variation in household income.  
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Output/Step 2 

The second step is to look at the table called Coefficients. Start focusing on the column called B; 

here we have the B coefficients. The dummy agecat_1824 was chosen as the reference category 

and is thus not included. The other B coefficients should be compared to that category. The B 

coefficient for agecat_2534 is 14.972 which means that individuals aged 25-34 have (on average) 

almost 15000 dollars more in household income compared to individuals in ages 18 to 24. The B 

coefficient for agecat_3549 is 35.909, meaning that individuals aged 35-49 have (on average) 

almost 36000 dollars more in household income compared to individuals in ages 18 to 24. The B 

coefficient for agecat_5064 is 60.033, which suggests that individuals aged 50-64 have (on 

average) roughly 60000 dollars more in household income compared to individuals in ages 18 to 

24. Finally, the B coefficient for agecat_6579 is 27.094, which suggests that individuals aged 65-

79 have (on average) roughly 27000 dollars more in household income compared to individuals 

in ages 18 to 24.  

 

The column called Sig. shows the p-value for each category of agecat. All of them are 0.000, 

which means that the differences between the reference category and each of the remaining 

categories are statistically significant (at the 0.1 % level). Then we look at the part of the table 

called 95 % Confidence Interval for B. This gives us the lower confidence limits (Lower Bound) 

and the upper confidence limits (Upper Bound). In the present example, the intervals do not 

include the null value (which is always x=0 in linear regression) and, thus, the results are 

statistically significant (at the 5 % level).  
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13.2 Multiple linear regression 

Quick facts  

Number of variables One dependent (y) 

At least two independent (x) 

Scale of variable(s) Dependent: continuous (ratio/interval) and normally distributed 

Independent: categorical (nominal/ordinal) and/or continuous 

(ratio/interval) 
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Multiple linear regression: Function 

 

 
1. Go to the Menu bar, choose Analyze\Regression\Linear.  

2. A new window called Linear Regression will open.   

3. In the left box, all your variables are displayed. You choose the variable you want 

to have as your dependent variable (y) and transfer it to the box called 

Dependent.  

4. Then you choose the variables you want as your independent variables (x) and 

transfer them to the box called Independent(s). 

5. Click on Statistics. 

6. Tick the box for Confidence Intervals. 

7. Click on Continue. 

8. Click on OK to get the results in your Output window.  
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Multiple linear regression: Syntax 

  
 

REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS CI(95) R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN  

  /DEPENDENT DEPVAR 

  /METHOD=ENTER INDEPVARS. 

 

 

DEPVAR  Name of the dependent variable. 

 

INDEPVARS  List the names of the independent variables. 
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Multiple linear regression  

 

 

Example  

Suppose we are interested to see if the number of furry pets (y) is related to having small 

children (x), residential area (x), and income (x). The number of furry pets is measured as the 

number of cats, dogs or other furry animals living in the household, and ranges between 0 and 

10. Having small children is measured as either 0=No or 1=Yes. Residential area has the values 

1=Metropolitan, 2=Smaller city, and 3=Rural. Income is measured as the yearly household 

income from salary in thousands of SEK (ranges between 100 and 700 SEK).  

 

When we do our linear regression, we can include the variables “having children” and 

“income” as they are, since the first is binary and the other is continuous. The remaining 

variable – residential area – is categorical with more than two values and therefore dummies 

must be used. We create one dummy for each category of “residential area”. The first dummy 

(metropolitan) is chosen as the reference category and is thus excluded from the analysis.   

 

In the regression analysis, we get a B coefficient for having small children that is 0.51. That 

means that the number of furry pets is higher among those who have small children. This 

association is adjusted for residential area and income. With regards to residential area, we get 

a B coefficient for “smaller city” of 2.02 and the B coefficient for “rural” is 4.99. That suggests, 

firstly, that the number of furry pets is higher (about two more pets, on average) among 

individuals living in smaller cities compared to metropolitan areas. Secondly, the number of 

furry pets is much higher (almost five more pets, on average) among individuals living in rural 

areas compared to metropolitan areas. This association is adjusted for having small children 

and income. Finally, the B coefficient for income is -0.1. This suggests that for every one-unit 

increase in income (i.e. for every additional one thousand SEK), the number of furry pets 

decrease by 0.1. This association is adjusted for having small children and residential area.     
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Multiple linear regression: Example  

 

 

(Data: SPSS_data1.sav) 

 

REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS CI(95) R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN  

  /DEPENDENT hourstv 

  /METHOD=ENTER income marital agecat_2534 agecat_3549 agecat_5064 agecat_6579. 

 

 
hourstv    Hours spent watching TV last week (Min=0; Max=36) 

income   Household income in thousands of dollars (Min=9; Max=1073) 

marital    Marital status (0=Unmarried; 1=Married) 

agecat_1824   (0=No; 1=Yes) Reference category  

agecat_2534   (0=No; 1=Yes) 

agecat_3549   (0=No; 1=Yes) 

agecat_5064   (0=No; 1=Yes) 

agecat_6579   (0=No; 1=Yes) 
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Output/Step 1 

The first step is to look at the table called Model Summary. Here you focus on the column for 

Adjusted R Square, which reflects the so-called “R2”. The value here reflects how much of the 

variation in the dependent variable (hourstv) that is explained by the independent variables 

(income, marital¸ dummies of agecat). Just move the decimal two places to the right to be able to 

interpret the R2 value as percentages. Accordingly, we see that the independent variables 

explain 0.8 % of the variation in hours spent watching TV.  
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Output/Step 2 

The second step is to look at the table called Coefficients. Start focusing on the column called B; 

here we have the B coefficients. With regard to income, we can see that the B coefficient is 0.005. 

This means that for every one-unit increase in household income (i.e. every additional one 

thousands of dollars in household income), the number of hours watching TV last week 

increases by 0.005. The column called Sig. shows the p-value for income; it is 0.000, which 

means that the association between income and hourstv is statistically significant (at the 0.1 % 

level). Then we look at the part of the table called 95 % Confidence Interval for B. This gives us 

the lower confidence limits (Lower Bound) and the upper confidence limits (Upper Bound). For 

income, the interval does not include the null value (which is always x=0 in linear regression) 

and, thus, the results are statistically significant (at the 5 % level). The conclusion here is that 

there is a statistically significant association between income and TV watching – where higher 

income is related to more TV watching – also when marital status and age is adjusted for.  

 

The B coefficient for marital status is 0.391, suggesting that married individuals watched more 

TV compared to unmarried individuals (we can conclude this since married have the higher 

value in the variable and hence the unmarried are automatically chosen as the reference 

category). The column called Sig. shows the p-value for marital status; it is 0.007, which means 

that the association between marital and hourstv is statistically significant (at the 1 % level). 

Then we look at the part of the table called 95 % Confidence Interval for B. This gives us the 

lower confidence limits (Lower Bound) and the upper confidence limits (Upper Bound). For 

marital status, the interval does not include the null value (which is always x=0 in linear 

regression) and, thus, the results are statistically significant (at the 5 % level). The conclusion 

here is that there is a statistically significant association between marital status and TV watching 

– where married individuals watch more TV than unmarried individuals – also when income and 

age is adjusted for. 

 

Then we have one B coefficient for each of the dummies of age. The dummy agecat_1824 was 

chosen as the reference category and is thus not included. The other B coefficients should be 

compared to that category. The B coefficient for agecat_2534 is 0.889 which means that 

individuals aged 25-34 watch more TV compared to those aged 18-24. The B coefficient for 

agecat_3549 is 0.532 which means that individuals aged 35-49 watch more TV compared to 

those aged 18-24. The B coefficient for agecat_5064 is 0.136 which means that individuals aged 

50-64 watch more TV compared to those aged 18-24. Finally, the B coefficient for agecat_6579 is 

-0.169 which means that individuals aged 65-79 watch less TV compared to those aged 18-24.  

 



 220 

The column called Sig. shows the p-value for each category of agecat. The two first dummies 

have p-values of 0.001 and 0.039, which means that they are statistically significantly different 

(at the 0.1 % level and the 5 % level respectively) from the reference category. The two latter 

dummies have p-values greater than 0.05, which that there are no statistically significant 

differences from the reference category. Then we look at the part of the table called 95 % 

Confidence Interval for B. This gives us the lower confidence limits (Lower Bound) and the 

upper confidence limits (Upper Bound). For agecat, the intervals do not include the null value 

(which is always x=0 in linear regression) for the first two dummies and, thus, these results are 

statistically significant. For the other two dummies, the intervals do include the null value and, 

thus, these results are not statistically significant. The conclusion here is that there is a partly 

statistically significant association between age and TV watching: the individuals watching the 

most TV are those in ages 25-34, but also those in ages 35-49 watch a lot of TV. TV watching is 

less common among those below the age of 25 as well as 50 years or older. These results are 

adjusted for income and marital status.   
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13.3 Model diagnostics 

First, it should be emphasised that a regression model generally has the aim to predict or 

“forecast” the value of y, depending on the values of the x-variables. Linear regression is 

concerned with finding the best-fitting straight line through the data points. Imagine that we 

make a scatterplot of two continuous variables; then a line is chosen so that it comes as close to 

all of the data points as possible. The best-fitting line is called a regression line.  

 

The regression line has an “intercept” (or “constant”) and a “slope”. The intercept is where the 

regression line strikes the y-axis when the value of the x-variable(s) is 0. The slope is basically 

the steepness of the line; i.e. how much y changes when x increases.   

 

The regression model thus gives us predicted values of y across the values of the x-variable(s). 

Of course, there is generally a difference between what the model predicts and what the 

individuals’ actual (observed) values are. This difference is called “residual” and is calculated as 

the observed value minus the predicted value.  

 

Often, “error” is used instead of “residual”, and although these terms are closely related, they are 

not the exact same thing: an error is the difference between the observed value and the 

population mean (and the population mean is typically unobservable), whereas a residual is the 

difference between the observed value and the sample mean (and the sample mean is 

observable).    
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Assumptions 

Before we can trust the results from our linear regression analysis to be valid, we need to assess 

our model to check that it does not violate any of the fundamental assumptions of linear 

regression.  

 

Checklist  

No outliers Outliers are individuals who do not follow the overall pattern of 

data.  

Homoscedasticity The variance around the regression line should be constant across 

all values of the x-variable(s). 

Normality The residuals for our x-variables should be normally distributed. 

Linearity The effect of x on y should be linear. 

No multicollinearity Multicollinearity may occur when two or more x-variables that are 

included simultaneously in the model are strongly correlated with 

each another. 
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Types of diagnostics 

Model diagnostics  

1. Scatterplot Check for linearity and outliers. 

Applies to continuous (ratio/interval) x-variables. 

2. Histogram  Check for normality. 

The histogram is based on the residuals, not the actual values. 

Applies to both simple and multiple linear regression analysis. 

3. Residual plot Check for linearity and homoscedasticity. 

The plot is based on the residuals, not the actual values. 

Applies to both simple and multiple linear regression analysis. 

4. Normal probability  

plot 

Check for normality. 

Applies to both simple and multiple linear regression analysis. 

a. P-P plot Check for normality, based on actual values (better at detecting 

anomalies in the middle of the distribution). 

b. Q-Q plot Check for normality, based on cumulative probabilites (better at 

detecting anomalies at the tails of the distribution). 

5. Correlation analysis Check for multicollinearity. 

Applies to continuous (ratio/interval) and some ordinal x-

variables. 

 
Scatterplots are described elsewhere in this guide (see Section 4.7) and so is correlation analysis 

(Chapter 9). The remainder of the current section will be divided into two parts: the first will 

deal with diagnostics in terms of histograms, residual plots and P-P plots, whereas the second 

deals with Q-Q plots.  
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Histograms, residual plots and P-P plots: Function 

 

 
1. Go to the Menu bar, choose Analyze\Regression\Linear.  

2. A new window called Linear Regression will open.   

3. In the left box, all your variables are displayed. You choose the variable you want 

to have as your dependent variable (y) and transfer it to the box called 

Dependent.  

4. Then you choose the variables you want as your independent variables (x) and 

transfer them to the box called Independent(s). 

5. Click on Statistics. 

6. Tick the box for Confidence Intervals. 

7. Click on Plots. 

8. In the left box, click on *ZRESID and transfer it to the box called Y: 

9. In the left box, click on *ZPRED and transfer it to the box called X: 

10. Tick the boxes called Histogram and Normal probability plot. 

11. Click on Continue. 

12. Click on OK to get the results in your Output window.  
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Histograms, residual plots and P-P plots: Syntax 

  
 

REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS CI(95) R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN  

  /DEPENDENT DEPVAR 

  /METHOD=ENTER INDEPVARS 

  /SCATTERPLOT=(*ZRESID ,*ZPRED) 

  /RESIDUALS HISTOGRAM(ZRESID) NORMPROB(ZRESID). 

 

 

DEPVAR  Name of the dependent variable. 

 

INDEPVAR  List the names of the independent variables. 

 

/SCATTERPLOT= Generates a residual plot. 

(*ZRESID ,*ZPRED)  

 

/RESIDUALS   Generates a histogram and a P-P plot. 

HISTOGRAM 

(ZRESID)  

NORMPROB(ZRESID)   

 

 



 226 

Histograms, residual plots and P-P plots: Example 

  
 

REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS CI(95) R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN  

  /DEPENDENT spoused2sel 

  /METHOD=ENTER gender ed hometype_singlefam hometype_townhouse    

  hometype_mobilehome 

  /SCATTERPLOT=(*ZRESID ,*ZPRED) 

  /RESIDUALS HISTOGRAM(ZRESID) NORMPROB(ZRESID). 

 

 

spoused2sel Spouse’s years of education, only for those with a spouse (Min=0; 

Max=24) 

gender   Gender (0=Man; 1=Woman) 

hometype_singlefam  Building type: single family (0=No; 1=Yes) 

hometype_multiplefam  Building type: multiple family (0=No; 1=Yes) Reference category 

hometype_townhouse    Building type: multiple family (0=No; 1=Yes) 

hometype_mobilehome  Building type: mobile home (0=No; 1=Yes) 
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Output/Step 1 

The first step is to look at the graph called Histogram. It shows how the residuals are distributed. 

They should follow the normal curve on the diagram. In the present example, this histogram 

looks rather normally distributed. 
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Output/Step 2 

The second step is to look at the graph called Normal P-P Plot of Regression Standardized 

Residual. The distribution should follow a diagonal line across the plot if the residuals are 

normally distributed. The P-P plot below looks good; the residuals are normally distributed 

which was already indicated from the histogram. 
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Output/Step 3 

The third step is to look at the graph called Scatterplot. The residuals should be equally 

distributed around 0. Systematic patterns usually indicate some problem with the model, like 

curve linearity or heteroscedasticity. Problematic patterns can look like cones or curves where 

the variation in the residuals is not constant over the whole range of values. For example, a cone-

shaped form on the residual plot has low variation in the residuals on low values, and high 

variation in the residuals on high values, or reversed. 
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Q-Q plots: Function 

 

 
Step 1 

 

1. Go to the Menu bar, choose Analyze\Regression\Linear.  

2. A new window called Linear Regression will open.   

3. In the left box, all your variables are displayed. You choose the variable you want 

to have as your dependent variable (y) and transfer it to the box called Dependent.  

4. Then you choose the variables you want as your independent variables (x) and 

transfer them to the box called Independent(s). 

5. Click on Statistics. 

6. Tick the box for Confidence Intervals. 

7. Click on Save. 

8. Under Residuals, tick the box called Standardized. 

9. Click on Continue. 

10. Click on OK to generate a new variable that consists of the standardized residuals 

from the regression analysis. 

 

Step 2 

 

1. Go to the Menu bar, choose Analyze\Descriptive Statistics\Q-Q Plots.  

2. In the left box, highlight the new variable you just generated, and transfer it to the 

box called Variables:  

3. Click on OK. 

 

 



 231 

Q-Q plots: Syntax 

  
 

Part 1 

 

REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS CI(95) R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN  

  /DEPENDENT DEPVAR 

  /METHOD=ENTER INDEPVARS 

  /SAVE ZRESID. 

 

Part 2 

 

PPLOT 

  /VARIABLES=VARNAME 

  /NOLOG 

  /NOSTANDARDIZE 

  /TYPE=Q-Q 

  /FRACTION=BLOM 

  /TIES=MEAN 

  /DIST=NORMAL. 

 

 

DEPVAR  Name of the dependent variable. 

 

INDEPVAR  List the names of the independent variables. 

 

/SAVE ZRESID Saves the standardized residuals.  

 

VARNAME  Name of the variable containing the standardized residuals. 
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Q-Q plots: Example 

  
 

Part 1 

 

REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS CI(95) R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN  

  /DEPENDENT spoused2sel 

  /METHOD=ENTER gender ed hometype_singlefam hometype_townhouse  

hometype_mobilehome 

  /SAVE ZRESID. 

 

Part 2 

 

PPLOT 

  /VARIABLES=ZRE_1 

  /NOLOG 

  /NOSTANDARDIZE 

  /TYPE=Q-Q 

  /FRACTION=BLOM 

  /TIES=MEAN 

  /DIST=NORMAL. 

 

 

spoused2sel Spouse’s years of education, only for those with a spouse (Min=0; 

Max=24) 

gender   Gender (0=Man; 1=Woman) 

hometype_singlefam  Building type: single family (0=No; 1=Yes) 

hometype_multiplefam  Building type: multiple family (0=No; 1=Yes) Reference category 

hometype_townhouse    Building type: multiple family (0=No; 1=Yes) 

hometype_mobilehome  Building type: mobile home (0=No; 1=Yes) 
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Output 

Look at the graph called Normal Q-Q Plot of Standardized Residual. If the observed values and 

the expected values coincide completely, the dots would follow the diagonal line and the 

variable tested would then be completely normally distributed. This is however very rare 

and some deviation is always present, but the principle is that the closer to the line the dots 

are the more normally distributed the variable is. For example the diagram above show a 

normally distributed variable, deviation at the ends is almost inevitable. It is more 

problematic if the dots are distributed in a wider s-shaped pattern and deviate from the 

diagonal over the whole range of values. 
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14. LOGISTIC REGRESSION 

Outline 

14.1 Simple logistic regression 

14.2 Multiple logistic regression 

14.3 Model diagnostics 
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Introduction 

Logistic regression is used when y is categorical with only two outcomes, i.e. 

dichotomous/binary (see section 2.2). If you have only one x, it is called “simple” logistic 

regression, and if you have more than one x, it is called “multiple” logistic regression. Regardless 

of whether you are doing a simple or a multiple regression, the x-variables can be categorical 

(nominal/ordinal) and/or continuous (ratio/interval). 

 

Key information from logistic regression 

1. Direction  

Negative Odds ratio below 1 

Positive Odds ratio above 1 

2. Effect size  

Odds ratio The odds of the outcome being a case divided by the odds that 

the outcome is a non-case, for every one-unit increase in x 

3. Statistical significance  

P-value p<0.05 Statistically significant at the 5 % level 

p<0.01 Statistically significant at the 1 % level 

p<0.001 Statistically significant at the 0.1 % level 

95 % Confidence intervals Interval includes 1: 

Statistically significant at the 5 % level 

Interval does not include 1:  

Statistically non-significant at the 5 % level 
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Odds ratio (OR) 

A logistic regression is thus based on the fact that the outcome has only two possible values: 0 or 

1.  Often, 1 is used to denote a “case” whereas 0 is then a “non-case”. What a “case” or “non-case” 

means depends on how the hypothesis is formulated. 

 

 

Example 1a  

We want to investigate the association between educational attainment (x) and employment 

(y). Our hypothesis is that educational attainment is positively associated with employment 

(i.e. higher educational attainment = more likely to be employed). 

Coding of employment: 0=Unemployment (non-case); 1=Employment (case) 

 

Example 1b  

We want to investigate the association between educational attainment (x) and 

unemployment (y). Our hypothesis is that educational attainment is negatively associated with 

unemployment (i.e. higher educational attainment = less likely to be unemployed). 

Coding of employment: 0=Employment (non-case); 1=Unemployment (case) 

 

  

Logistic regression is used to predict the “odds” of being a “case” based on the values of the x-

variable(s). Just as for linear regression analysis, we get a coefficient (log odds) that shows the 

effect of x on y. However, because logistic regression is based on other assumptions that linear 

regression, we cannot interpret these coefficients very easily. Instead we focus on something 

called the “odds ratio” (“OR”). We can get the odds ratio by taking the “exponent” of the 

coefficient: “exp(B)”.  

 

The odds ratio is interpreted in the following way: “for every one-unit increase in x, y 

increases/decreases by [the odds ratio]”. Accordingly, if you get a negative OR (below 1), you 

say: “for every one-unit increase in x, y decreases by [the OR]”, and if you get a positive OR 

(above 1), you say: “for every one-unit increase in x, y increases by [the OR]”. Unlike linear 

regression, where the null value (i.e. value that denotes no difference) is 0, the null value for 

logistic regression is 1. Also note that an OR can never be negative – it can range between 0 and 

infinity. What the OR actually stands for – and whether we can say that an effect is small or big – 

depends on the values of x and y.  
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Is the odds ratio the same as risk, probability, chance or likelihood? 

The simple answer is no. These terms are not the same (but the more uncommon the outcome is, 

the closer odds ratios and risks become). Still, it is very common that odds ratios are interpreted 

in terms of risks, probabilities, chances or likelihoods. For example, suppose we examine the 

association between unemployment (0=Employed; 1=Unemployed) and alcohol abuse (0=No; 

1=Yes) and we get an OR for unemployment that is 2.01. It is very tempting to interpret this as 

the unemployed having twice the risk of alcohol abuse compared to the employed. Or, if we 

investigate the association between school marks (ranges between 10 and 20, higher 

score=better marks) and continuation to university education (0=No; 1=Yes), and get an OR for 

school marks that is 1.20, many would say that the chance of university education increases by 

20 % for every one-unit increase of school marks.  

 

To avoid all of these problems, here is one suggestion: if you do not have to give any exact 

numbers, then it is all right to say that some individuals have higher or lower odds/odds 

ratio/risk/probability compared to other individuals. However, if you want to give exact 

numbers to exemplify, always use the actual OR. 

 

 

Some examples 

The results suggest that women (OR=0.84) are less likely than men to subscribe to a daily 

newspaper. 

Based on logistic regression analysis, it may be concluded that individuals with more 

behavioural problems in childhood have a greater risk of drug abuse in adulthood (OR=1.49). 

There is a negative association between educational attainment and number of children: the 

higher the educational attainment, the lower the number of children (OR=0.90). 

Individuals living in urban areas (OR=0.33) are less likely compared to those living in rural 

areas to own a horse. 

 

 

P-values and confidence intervals 

In logistic regression analysis you can of course get information about statistical significance, in 

terms of both p-values and confidence intervals. The p-values and the confidence intervals will 

give you partly different information, but: they are not contradictory. If the p-value is below 
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0.05, the 95 % confidence interval will not include 1 (statistical significance at the 5 % level), 

and if the p-value is above 0.05, the 95 % confidence interval will include 1 (statistical non-

significance at the 5 % level). 

 

Note that when you look at the p-value, you can rather easily distinguish between the 

significance levels (i.e. you can directly say whether you have statistical significance at the 5 % 

level, the 1 % level, or the 0.1 % level). When it comes to confidence intervals, SPSS will by 

default choose 95 % level confidence intervals (i.e. statistical significance at the 5 % level). For 

some analyses, it is however possible to change the confidence level for the intervals. For 

example, you may instruct SPSS to show 99 % confidence intervals instead. 

 

R-Squared 

In contrast to linear regression, “R-Squared” or “R2” is not very usable (again, because of the 

assumptions behind logistic regression). You will, however, get a value for the so-called 

“Nagelkerke R Square” which is similar to the R-squared. 

 

Simple versus multiple regression models 

The difference between simple and multiple regression models, is that in a multiple regression 

each x-variable’s effect on y is estimated while taking into account the other x-variables’ effects 

on y. We then say that these other x-variables are “held constant”, or “adjusted for”, or 

“controlled for”. Because of this, multiple regression analysis is a way of dealing with the issue of 

“confounding” variables, and to some extent also “mediating” variables (see Section 11.2). 

 

It is highly advisable to run a simple logistic regression for each of the x-variables before 

including them in a multiple regression. Otherwise, you will not have anything to compare the 

adjusted odds ratios with (i.e. what happened to the OR when other x-variables were included in 

the analysis). Including multiple x-variables in the same model usually (but not always) means 

that the associations are reduced in strength – which would of course be expected if the x-

variables overlapped in their effect on y.      
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Define your analytical sample 

Before you begin, make sure that you have defined your analytical sample correctly (see Section 

12.6).  
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14.1 Simple logistic regression 

Quick facts  

Number of variables One dependent (y) 

One independent (x) 

Scale of variable(s) Dependent: binary 

Independent: categorical (nominal/ordinal) or continuous 

(ratio/interval) 
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Simple logistic regression: Function 

 

 
1. Go to the Menu bar, choose Analyze\Regression\Binary Logistic.  

2. A new window called Logistic Regression will open.   

3. In the left box, all your variables are displayed. You choose the variable you want 

to have as your dependent variable (y) and transfer it to the box called 

Dependent.  

4. Then you choose the variable you want as your independent variable (x) and 

transfer it to the box called Covariates. 

5. Click on Options. 

6. Tick the box for CI for exp(B). 

7. Click on Continue. 

8. Click on OK to get the results in your Output window.  
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Simple logistic regression: Syntax 

  
 

LOGISTIC REGRESSION VARIABLES DEPVAR 

  /METHOD=ENTER INDEPVAR  

  /PRINT=CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). 

 

 

DEPVAR  Name of the dependent variable. 

 

INDEPVAR  Name of the independent variable. 
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Simple logistic regression with a continuous x 

 

Example 1  

Suppose we want to examine the association between unemployment days (x) and mortality 

(y) by means of a simple logistic regression analysis. Unemployment days are measured as the 

total number of days in unemployment during a year, and ranges from 0 to 365. Mortality has 

the values 0=Alive and 1=Dead. Let us say that we get an OR that is 1.67. That would mean that 

we have a positive association: the higher the number of unemployment days, the higher the 

risk of dying. 

 

 

 

Example 2  

In another example, we may examine the association between intelligence scores (x) and drug 

use (y). Intelligence scores are measured by a series of tests that render various amounts of 

points, and ranges between 20 and 160 points. Drug use has the values 0=No and 1=Yes. Here, 

we get an OR of 0.91. We can thus conclude that the risk of using drugs decrease for every one-

unit increase in intelligence scores. 
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Simple logistic regression with a continuous x: Example 

 

 

(Data: SPSS_data1.sav) 

 

LOGISTIC REGRESSION VARIABLES active 

  /METHOD=ENTER age  

  /PRINT=CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). 

 

 

active   Active lifestyle (0=No; 1=Yes) 

age   Age in years (Min=18; Max=79) 
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Output 

Look at the table called Variables in the Equation. The column called Exp(B) shows the odds 

ratio (OR) for the variable age. The OR is 0.972, which means that we have a negative association 

between age and active. In other words, for every one-unit increase in age (i.e. one additional 

lived year), the likelihood of having an active lifestyle decreases.  

 

The column called Sig. shows the p-value. Here, the p-value is 0.000 which means that the 

association between age and active is statistically significant (at the 0.1 % level). The part of the 

table called 95 % C.I. for EXP(B) gives us the lower confidence limits (Lower) and the upper 

confidence limits (Upper). The interval does not include the null value (which is always x=1 in 

logistic regression) and, thus, the results are statistically significant (at the 5 % level). 
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Simple logistic regression with a binary x 

 

Example 1  

Suppose we want to examine the association between gender (x) and alcohol abuse (y) by 

means of a simple logistic regression analysis. Gender has the values 0=Man and 1=Woman, 

whereas alcohol abuse has the values 0=No and 1=Yes. Now, we get an OR of 0.66. This would 

mean that women are less likely to abuse alcohol compared to men.   

 

 

 

Example 2  

Here we want to examine the association between having small children (x) and owning a pet 

(y) by means of a simple logistic regression analysis. Having small children is measured as 

either 0=No or 1=Yes. Owning a pet has the values 0=No and 1=Yes. Let us say that we get an 

OR that is 1.49. We can hereby conclude that it is more common to own a pet in families with 

small children compared to families without small children. 
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Simple logistic regression with a binary x: Example 

 

 

(Data: SPSS_data1.sav) 

 

LOGISTIC REGRESSION VARIABLES marital 

  /METHOD=ENTER active  

  /PRINT=CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). 

 

 

marital   Marital status (0=Unmarried; 1=Married) 

active   Active lifestyle (0=No; 1=Yes) 
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Output 

Look at the table called Variables in the Equation. The column called Exp(B) shows the odds 

ratio (OR) for the variable active. The OR is 0.987, which means that we have a negative 

association between active and marital. In other words, those who have an active lifestyle are 

less likely to be married compared to those who do not have an active lifestyle.  

 

The column called Sig. shows the p-value. Here, the p-value is 0.823 which means that the 

association between active and marital is not statistically significant. The part of the table called 

95 % C.I. for EXP(B) gives us the lower confidence limits (Lower) and the upper confidence 

limits (Upper). The interval includes the null value (which is always x=1 in logistic regression) 

and, thus, the results are not statistically significant. 
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Simple logistic regression with a categorical x (dummies) 

 

Example 1  

We want to investigate the association between educational attainment (x) and mortality (y) 

by means of a simple logistic regression analysis. Educational attainment has the values: 

1=Compulsory education, 2=Upper secondary education, and 3=University education. 

Mortality has the values 0=No and 1=Yes. Since our x-variable is categorical with more than 

two categories, we have to create dummies (one 0/1 coded variable for each category). We 

choose those with compulsory education as our reference category, meaning that this dummy 

will not be included in the analysis. We will thus get one odds ratio for upper secondary 

education and one odds ratio for university education. Each of these should be compared to 

the reference category. Let us say that we get an OR for upper secondary education that is 0.82 

and we get an OR for university education that is 0.69. We can thus conclude – based on the 

direction of the estimates – that higher educational attainment is associated with a lower 

mortality risk.  

 

 

 

Example 2  

Suppose we are interested in the association between family type (x) and children’s average 

school marks (y). Family type has three categories: 1=Two-parent household, 2=Joint custody, 

and 3=Single-parent household. Children’s average school marks are categorised into 0=Above 

average and 1=Below average. Since our x-variable is categorical with more than two 

categories, we have to create dummies (one 0/1 coded variable for each category). We choose 

children living in a two-parent household as our reference category, meaning that this dummy 

will not be included in the analysis. We will thus get one odds ratio for joint custody and one 

odds ratio for single-parent household. Each of these should be compared to the reference 

category. The analysis results in an OR of 1.02 for joint custody and an OR of 1.55 for single-

parent household. That would mean that children living in family types other than two-parent 

households are more likely to have school marks below average.  
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Simple logistic regression with a categorical x (dummies): Example 

 

 

(Data: SPSS_data1.sav) 

 

LOGISTIC REGRESSION VARIABLES ownpc 

  /METHOD=ENTER edcat_no edcat_somecoll edcat_colldeg edcat_postgrad 

  /PRINT=CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). 

 

 
ownpc   Owns computer (0=No; 1=Yes) 

edcat_no           Did not complete high school  (0=No; 1=Yes) 

edcat_highsc   High school degree  (0=No; 1=Yes) Reference group 

edcat_somecoll Some college  (0=No; 1=Yes) 

edcat_colldeg  College degree  (0=No; 1=Yes) 

edcat_postgrad Post-undergraduate degree  (0=No; 1=Yes) 
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Output 

Look at the table called Variables in the Equation. The column called Exp(B) shows the odds 

ratios (OR) for the dummies of the variable edcat. The OR is 0.380 for the dummy edcat_no (Did 

not complete high school), 2.253 for edcat_somecoll (Some college), 4.864 for edcat_colldeg 

(College degree), and 8.756 for edcat_postgrad (Post-undergraduate degree). This means that 

those who do not complete high school are less likely to own a computer compared to those with 

a high school degree, whereas those who have some college education or more are more likely to 

own a computer compared to those with a high school degree. We can thus see a clear positive 

association between edcat and ownpc: the higher the educational attainment, the higher the 

likelihood of owning a computer.  

 

The column called Sig. shows the p-value. Here, the p-values are 0.000 which means that the 

association between edcat and ownpc is statistically significant (at the 0.1 % level). The part of 

the table called 95 % C.I. for EXP(B) gives us the lower confidence limits (Lower) and the upper 

confidence limits (Upper). The intervals do not include the null value (which is always x=1 in 

logistic regression) and, thus, the results are statistically significant (at the 5 % level). 
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14.2 Multiple logistic regression 

Quick facts  

Number of variables One dependent (y) 

At least two independent (x) 

Scale of variable(s) Dependent: binary 

Independent: categorical (nominal/ordinal) and/or continuous 

(ratio/interval) 
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Multiple logistic regression: Function 

 

 
1. Go to the Menu bar, choose Analyze\Regression\Binary Logistic.  

2. A new window called Logistic Regression will open.   

3. In the left box, all your variables are displayed. You choose the variable you want 

to have as your dependent variable (y) and transfer it to the box called 

Dependent.  

4. Then you choose the variables you want as your independent variables (x) and 

transfer them to the box called Covariates. 

5. Click on Options. 

6. Tick the box for CI for exp(B). 

7. Click on Continue. 

8. Click on OK to get the results in your Output window.  
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Multiple logistic regression: Syntax 

  
 

LOGISTIC REGRESSION VARIABLES DEPVAR 

  /METHOD=ENTER INDEPVARS  

  /PRINT=CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). 

 

 

DEPVAR  Name of the dependent variable. 

 

INDEPVARS  List the names of the independent variables. 
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Multiple logistic regression  

 

Example  

Suppose we are interested to see if having a pet (y) is related to having small children (x), 

residential area (x), and income (x). Having a pet has the values 0=No and 1=Yes.  Having small 

children is measured as either 0=No or 1=Yes. Residential area has the values 1=Metropolitan, 

2=Smaller city, and 3=Rural. Income is measured as the yearly household income from salary 

in thousands of SEK (ranges between 100 and 700 SEK).  

 

When we do our logistic regression, we can include the variables “having children” and 

“income” as they are, since the first is binary and the other is continuous. The remaining 

variable – residential area – is categorical with more than two values and therefore dummies 

must be used. We create one dummy for each category of “residential area”. The first dummy 

(metropolitan) is chosen as the reference category and is thus excluded from the analysis.   

 

In the regression analysis, we get an OR for having small children that is 1.30. That means that 

those who have small children are more likely to also have a pet. This association is adjusted 

for residential area and income. With regards to residential area, we get an OR for “smaller 

city” of 1.78 and the OR for “rural” is 4.03. This suggests that those who live in a smaller city 

are more likely to have a pet, and so are those living in rural areas. These results are adjusted 

for having small children and income. Finally, the OR for income is 0.93. This suggests that for 

every one-unit increase in income (i.e. for every additional one thousand SEK), the likelihood 

of having a small pet decreases. This association is adjusted for having small children and 

residential area.     
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Multiple logistic regression: Example  

 

 

(Data: SPSS_data1.sav) 

 

LOGISTIC REGRESSION VARIABLES active 

  /METHOD=ENTER age marital bfast_oatmeal bfast_cereal 

  /PRINT=CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). 

 

 
active   Active lifestyle (0=No; 1=Yes) 

age   Age in years (Min=18; Max=79) 

marital   Marital status (0=Unmarried; 1=Married) 

bfast_energy   Preferred breakfast: Energy bar (0=No; 1=Yes) Reference group 

bfast_oatmeal  Preferred breakfast: Oatmeal (0=No; 1=Yes) 

bfast_cereal   Preferred breakfast: Cereal (0=No; 1=Yes) 
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Output 

Look at the table called Variables in the Equation. The column called Exp(B) shows the odds 

ratios (OR) for the variables. The OR is 0.981 for age. This means that for every one-unit increase 

in age (i.e. one additional year of living), the odds of having an active lifestyle decreases. This 

association is adjusted for marital and bfast. The OR is 1.153 for marital, meaning that those who 

are married are more likely to have an active lifestyle compared to those who are married. This 

association is adjusted for age and bfast. With regard to bfast, we have included two dummies in 

the model (bfast_energy is the reference category). The OR for bfast_oatmeal is 0.349 and the OR 

for bfast_cereal is 0.362. This means that those who prefer oatmeal or cereal for breakfast are 

less likely to have an active lifestyle compared to those who prefer an energy bar. These results 

are adjusted for age and marital. The column called Sig. shows the p-value. Here, the p-value for 

age and bfast is 0.000 which means that we have statistically significant associations with active 

lifestyle (at the 0.1 % level). The p-value for marital is 0.020, suggesting that also marital status 

has a statistically significant association with active lifestyle (at the 5 % level). Remember that 

all these association are mutually adjusted. The part of the table called 95 % C.I. for EXP(B) gives 

us the lower confidence limits (Lower) and the upper confidence limits (Upper). None of the 

intervals include the null value (which is always x=1 in logistic regression) and, thus, the results 

are statistically significant (at the 5 % level). 
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14.3 Model diagnostics 

Goodness of fit 

The assumptions behind logistic regression are different from linear regression. For example, we 

do not need to assume linearity, homoscedasticity or normality. Multicollinearity should 

however be avoided (i.e. strong correlations between the x-variables in multiple logistic 

regression – check with correlation analysis; see Chapter 9). Most importantly, the model should 

fit the data. There are several tests to determine “goodness of fit” or, put differently, if the 

estimated model (i.e. the model with one or more x-variables) predicts the outcome better than 

the null model (i.e. a model without any x-variables). Below, some of these tests are discussed: 

classification tables, the Hosmer and Lemeshow test and the ROC curve.  

 

Estimate the goodness of fit 

Classification tables  

The Hosmer and Lemeshow test  

ROC curve 

 
Before going into the specific tests, we need to address the issues of “sensitivity” and 

“specificity”. By comparing the cases and non-cases predicted by the model with the cases and 

non-cases actually present in the outcome, we can draw a conclusion about the proportion of 

correctly predicted cases (sensitivity) and the proportion of correctly classified non-cases 

(specificity).   

 

Sensitivity and specificity 

 Estimated model 

  Non-case Case 

“Truth” 
Non-case True negative False positive 

Case False negative True positive 
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Classification tables 

A classification table is similar to the table about sensitivity and specificity, only that it is based 

on the model that you run, and thus gives you the frequency of true negatives, false positives, 

false negatives, and true positives, as well as the overall percentages of cases and non-cases that 

are correctly predicted by the estimated model. Note that a classification table is automatically 

produced by SPSS and appears in the standard output. 

The Hosmer and Lemeshow test 

This test is a type of a chi-square test. It indicates the extent to which the estimated model 

provides a better fit to the data (i.e. better predictive power) than the null model. The test will 

produce a p-value: if the p-value is above 0.05 (statistically non-significant) the estimated model 

has adequate fit, and if the p-value is below 0.05 (statistically significant) the estimated more 

does not adequately fit the data.  

 

ROC curve 

The ROC curve is a graph that shows how well the estimated model predicts cases (sensitivity) 

and non-cases (specificity). What we are interested in here is the “area under the curve” (AUC). 

The AUC ranges between 0.5 and 1.0. The nearer the AUC is to 1, the better the predictive power. 

On the other hand, a value of 0.5 suggests that we may just flip a coin to decide on whether the 

outcome is a case or non-case. Here are some commonly used cut-off points when it comes to 

AUC: 

 

Area under the curve (AUC) 

0.5-0.6 Fail 

0.6-0.7 Poor 

0.7-0.8 Fair 

0.8-0.9 Good 

0.9-1.0 Excellent 
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Some remarks on model fit 

A general comment about model fit: if the main interest was to identify the best model to predict 

a certain outcome, that would solely guide which x-variables we put into the analysis. For 

example, we would exclude x-variables that do not contribute to the model’s predictive ability. 

However, research is often guided by theory and by the interest of examining associations 

between variables. If we thus have good theoretical reasons for keeping a certain x-variable or 

sticking to a certain model, we should most likely do that (but still, the model should not fit the 

data horribly). Model diagnostics will then be a way of showing others the potential problems 

with the model we use.  
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Classification tables: Function 

 

 
1. Go to the Menu bar, choose Analyze\Regression\Binary Logistic.  

2. A new window called Logistic Regression will open.   

3. In the left box, all your variables are displayed. You choose the variable you want 

to have as your dependent variable (y) and transfer it to the box called 

Dependent.  

4. Then you choose the variables you want as your independent variables (x) and 

transfer them to the box called Covariates. 

5. Click on Options. 

6. Tick the box for CI for exp(B). 

7. Click on Continue. 

8. Click on OK to get the results in your Output window.  
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Classification tables: Syntax 

  
 

LOGISTIC REGRESSION VARIABLES DEPVAR 

  /METHOD=ENTER INDEPVARS  

  /PRINT=CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). 

 

 

DEPVAR  Name of the dependent variable. 

 

INDEPVARS  List the names of the independent variables. 
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Classification tables: Example 

 

 

(Data: SPSS_data1.sav) 

 

LOGISTIC REGRESSION VARIABLES active 

  /METHOD=ENTER age marital bfast_oatmeal bfast_cereal 

  /PRINT=CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). 

 

 
active   Active lifestyle (0=No; 1=Yes) 

age   Age in years (Min=18; Max=79) 

marital   Marital status (0=Unmarried; 1=Married) 

bfast_energy   Preferred breakfast: Energy bar (0=No; 1=Yes) Reference group 

bfast_oatmeal  Preferred breakfast: Oatmeal (0=No; 1=Yes) 

bfast_cereal   Preferred breakfast: Cereal (0=No; 1=Yes) 
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Output/Step 1 

Look at the table called Classification Table (note: not the first but the second one; below Block 

1: Method = Enter). The combination No+No (n=2053) contains the true negative, the 

combination No+Yes (n=612) contains the false positive, the combination Yes+No (n=1134) 

contains the false negative, and the combination Yes+Yes (n=1201) contains the true positive. 

The overall percentage of cases and non-cases that is correctly classified by the estimated model 

is 65.1 %. 

 

 

 
 

 

Output/Step 2 

The next step is to look at the other table called Classification Table (note: not the second but the 

first one; below Block 0: Method = Enter). The overall percentage of cases and non-cases that is 

correctly classified by the null model is 53.3 %. In other words, the estimated model did a better 

job of predicting the outcome than the null model. 
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The Hosmer and Lemeshow test: Function 

 

 
1. Go to the Menu bar, choose Analyze\Regression\Binary Logistic.  

2. A new window called Logistic Regression will open.   

3. In the left box, all your variables are displayed. You choose the variable you want 

to have as your dependent variable (y) and transfer it to the box called 

Dependent.  

4. Then you choose the variables you want as your independent variables (x) and 

transfer them to the box called Covariates. 

5. Click on Options. 

6. Tick the box for CI for exp(B). 

7. Click on Continue. 

8. Click on OK to get the results in your Output window.  

 



 266 

The Hosmer and Lemeshow test: Syntax 

  
 

LOGISTIC REGRESSION VARIABLES DEPVAR 

  /METHOD=ENTER INDEPVARS  

  /PRINT=GOODFIT CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). 

 

 

DEPVAR  Name of the dependent variable. 

 

INDEPVARS  List the names of the independent variables. 

 

GOODFIT   Include the Hosmer-Lemeshow goodness-of-fit test 
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The Hosmer and Lemeshow test: Example 

 

 

(Data: SPSS_data1.sav) 

 

LOGISTIC REGRESSION VARIABLES active 

  /METHOD=ENTER age marital bfast_oatmeal bfast_cereal 

  /PRINT=GOODFIT CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). 

 

 
active   Active lifestyle (0=No; 1=Yes) 

age   Age in years (Min=18; Max=79) 

marital   Marital status (0=Unmarried; 1=Married) 

bfast_energy   Preferred breakfast: Energy bar (0=No; 1=Yes) Reference group 

bfast_oatmeal  Preferred breakfast: Oatmeal (0=No; 1=Yes) 

bfast_cereal   Preferred breakfast: Cereal (0=No; 1=Yes) 
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Output 

Look at the table called Hosmer and Lemeshow test. The column that is labelled Sig. shows the p-

value for the test. If the p-value is above 0.05 (statistically non-significant) the estimated model 

has adequate fit, and if the p-value is below 0.05 (statistically significant) the estimated more 

does not adequately fit the data. In the current example, we have a p-value of 0.130. This 

suggests that the estimated model has adequate fit.  
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ROC curve: Function 

 

 
Step 1 

 

1. Go to the Menu bar, choose Analyze\Regression\Binary Logistic.  

2. A new window called Logistic Regression will open.   

3. In the left box, all your variables are displayed. You choose the variable you want 

to have as your dependent variable (y) and transfer it to the box called 

Dependent.  

4. Then you choose the variables you want as your independent variables (x) and 

transfer them to the box called Covariates. 

5. Click on Save. 

6. Tick the box for Probabilities.  

7. Click on Continue. 

8. Click on OK to generate a new variable that contains the predicted probabilities.  

 

Step 2 

 

1. Go to the Menu bar, choose Analyze\ROC Curve.  

2. A new window called ROC Curve will open.   

3. In the left box, all your variables are displayed. You choose the variable you just 

generated (the one with the predicted probabilities) and transfer it to the box 

called Test Variable.  

4. Choose your dependent variable (y) and transfer it to the box called State 

Variable.  

5. In the box called Value of State Variable, write the value that signifies a case 

(commonly a non-case has the value 0 and a case has the value 1; then write 1).  

6. Tick the box called With diagonal reference line.  

7. Click on OK to get the results in your Output window.  
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ROC curve: Syntax 

  
 

Step 1 

 

LOGISTIC REGRESSION VARIABLES DEPVAR 

  /METHOD=ENTER INDEPVARS  

  /SAVE=PRED 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). 

 

Step 2 

 

ROC PRED BY DEPVAR (CASEVALUE) 

  /PLOT=CURVE(REFERENCE) 

  /CRITERIA=CUTOFF(INCLUDE) TESTPOS(LARGE) DISTRIBUTION(FREE) CI(95) 

  /MISSING=EXCLUDE. 

 

 

DEPVAR  Name of the dependent variable. 

 

INDEPVARS  List the names of the independent variables. 

 

/SAVE=PRED  Generate a new variable containing the predicted probabilities 

 

PRED  Name of the variable containing the predicted probabilities 

 

(CASEVALUE) The value of the dependent variable that signifies a “case”  
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ROC curve: Example 

 

 

(Data: SPSS_data1.sav) 

 

Part 1 

 

LOGISTIC REGRESSION VARIABLES active 

  /METHOD=ENTER age marital bfast_oatmeal bfast_cereal  

  /SAVE=PRED 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). 

 

Part 2 

 

ROC PRE_1 BY active (1) 

  /PLOT=CURVE(REFERENCE) 

  /CRITERIA=CUTOFF(INCLUDE) TESTPOS(LARGE) DISTRIBUTION(FREE) CI(95) 

  /MISSING=EXCLUDE. 

 

 
active   Active lifestyle (0=No; 1=Yes) 

age   Age in years (Min=18; Max=79) 

marital   Marital status (0=Unmarried; 1=Married) 

bfast_energy   Preferred breakfast: Energy bar (0=No; 1=Yes) Reference group 

bfast_oatmeal  Preferred breakfast: Oatmeal (0=No; 1=Yes) 

bfast_cereal   Preferred breakfast: Cereal (0=No; 1=Yes) 

PRE_1  Predicted probabilities
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Output/Step 1 

Look at the graph called ROC Curve. The closer to the upper left corner the curve is, the better 

the predictions are. If the curve follow the corner perfectly all predictions are correct, if the line 

follow the diagonal line we could just as well flip a coin.  

 

 

 
 

 



 273 

Output/Step 2 

Look at the table called Area Under the Curve. The AUC ranges between 0.5 and 1.0. The nearer 

the AUC is to 1, the better the predictive power. On the other hand, a value of 0.5 suggests that 

we may just flip a coin to decide on whether the outcome is a case or non-case. A value of 0.681, 

as we have here, suggests rather poor predictive power.  
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15. ORDINAL REGRESSION 

Outline 

15.1 Simple ordinal regression 

15.2 Multiple ordinal regression 

15.3 Model diagnostics 
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Introduction 

Ordinal regression is used when y is ordinal (see section 2.2). If you have only one x, it is called 

“simple” ordinal regression, and if you have more than one x, it is called “multiple” ordinal 

regression. Regardless of whether you are doing a simple or a multiple regression, the x-

variables can be categorical (nominal/ordinal) and/or continuous (ratio/interval). 

 

Key information from ordinal regression 

1. Direction  

Negative Odds ratio below 1 

Positive Odds ratio above 1 

2. Effect size  

Odds ratio The odds of the outcome being lower or higher, for every one-

unit increase in x 

3. Statistical significance  

P-value p<0.05 Statistically significant at the 5 % level 

p<0.01 Statistically significant at the 1 % level 

p<0.001 Statistically significant at the 0.1 % level 

95 % Confidence intervals Interval includes 1: 

Statistically significant at the 5 % level 

Interval does not include 1:  

Statistically non-significant at the 5 % level 
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Odds ratios (OR) 

An ordinal regression is thus based on the fact that the outcome consists of three or more 

categories that are possible to rank (i.e. ordered categories): 

 

 

Some examples 

Educational attainment (1=Compulsory; 2=Upper secondary; 3=University) 

School marks (1=Low; 2=Average; 3=High) 

Self-rated health (1=Excellent; 2=Good; 3=Fair; 4=Poor) 

Statement: “Eurovision Song Contest is entertaining” (1=Strongly agree; 2=Agree; 3=Neither 

agree nor disagree; 4=Disagree; 5=Strongly disagree) 

 

 

Ordinal regression is used to predict the “odds” of having a lower or a higher value for your 

dependent variable (y), based on the values of the x-variable(s). Just as for linear regression 

analysis, we get a coefficient (log odds) that shows the effect of x on y. However, because ordinal 

regression is based on other assumptions that linear regression, we cannot interpret these 

coefficients very easily. Instead we focus on something called the “odds ratio” (“OR”). We can get 

the odds ratio by taking the “exponent” of the coefficient: “exp(B)”.  

 

The OR is interpreted in the following way: “for every one-unit increase in x, y 

increases/decreases by [the OR]”. Accordingly, if you get a negative OR (below 1), you say: “for 

every one-unit increase in x, y decreases by [the OR]”, and if you get a positive OR (above 1), you 

say: “for every one-unit increase in x, y increases by [the OR]”. Unlike linear regression, where 

the null value (i.e. value that denotes no difference) is 0, the null value for ordinal regression is 1. 

Also note that an OR can never be negative – it can range between 0 and infinity. What the OR 

actually stands for – and whether we can say that an effect is small or big – depends on the 

values of x and y.  

 

Is the odds ratio the same as risk, probability, chance or likelihood? 

The simple answer is no. These terms are not the same (but the more uncommon the outcome is, 

the closer odds ratios and risks become). Still, it is very common that odds ratios are interpreted 

in terms of risks, probabilities, chances or likelihoods. For example, suppose we examine the 

association between unemployment (0=Employed; 1=Unemployed) and alcohol consumption 
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(1=None; 2=Moderate; 3=Excessive) and we get an OR for unemployment that is 1.36. It is very 

tempting to interpret this as the unemployed having 36 % higher risk of drinking more alcohol 

compared to the employed. Or, if we investigate the association between school marks (ranges 

between 10 and 20, higher score=better marks) and educational attainment (1=Low; 2=Medium; 

3=High), and get an OR for school marks that is 1.09, many would say that the chance of higher 

educational attainment increases by 9 % for every one-unit increase of school marks.  

 

To avoid all of these problems, here is one suggestion: if you do not have to give any exact 

numbers, then it is all right to say that some individuals have higher or lower odds/odds 

ratio/risk/probability compared to other individuals. However, if you want to give exact 

numbers to exemplify, always use the actual OR. 

 

P-values and confidence intervals 

In ordinal regression analysis you can of course get information about statistical significance, in 

terms of both p-values and confidence intervals. The p-values and the confidence intervals will 

give you partly different information, but: they are not contradictory. If the p-value is below 

0.05, the 95 % confidence interval will not include 1 (statistical significance at the 5 % level), 

and if the p-value is above 0.05, the 95 % confidence interval will include 1 (statistical non-

significance at the 5 % level). 

 

Note that when you look at the p-value, you can rather easily distinguish between the 

significance levels (i.e. you can directly say whether you have statistical significance at the 5 % 

level, the 1 % level, or the 0.1 % level). When it comes to confidence intervals, SPSS will by 

default choose 95 % level confidence intervals (i.e. statistical significance at the 5 % level). For 

some analyses, it is however possible to change the confidence level for the intervals. For 

example, you may instruct SPSS to show 99 % confidence intervals instead. 

 

R-Squared 

In contrast to linear regression, “R-Squared” or “R2” is not very usable (again, because of the 

assumptions behind ordinal regression). You will, however, get a value for the so-called 

“Nagelkerke R Square” which is similar to the R-squared. 
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Simple versus multiple regression models 

The difference between simple and multiple regression models, is that in a multiple regression 

each x-variable’s effect on y is estimated while taking into account the other x-variables’ effects 

on y. We then say that these other x-variables are “held constant”, or “adjusted for”, or 

“controlled for”. Because of this, multiple regression analysis is a way of dealing with the issue of 

“confounding” variables, and to some extent also “mediating” variables (see Section 11.2). 

 

It is highly advisable to run a simple ordinal regression for each of the x-variables before 

including them in a multiple regression. Otherwise, you will not have anything to compare the 

adjusted odds ratios with (i.e. what happened to the OR when other x-variables were included in 

the analysis). Including multiple x-variables in the same model usually (but not always) means 

that the associations are reduced in strength – which would of course be expected if the x-

variables overlapped in their effect on y.      

 

Define your analytical sample 

Before you begin, make sure that you have defined your analytical sample correctly (see Section 

12.6).  
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15.1 Simple ordinal regression 

Quick facts  

Number of variables One dependent (y) 

One independent (x) 

Scale of variable(s) Dependent: ordinal 

Independent: categorical (nominal/ordinal) or continuous 

(ratio/interval) 
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Simple ordinal regression: Function 

 

 
Part 1 

 

1. Go to the Menu bar, choose Analyze\Regression\Ordinal.  

2. A new window called Ordinal Regression will open.   

3. In the left box, all your variables are displayed. You choose the variable you want 

to have as your dependent variable (y) and transfer it to the box called 

Dependent.  

4. Then you choose the variable you want as your independent variable (x). If it is 

categorical (i.e. nominal/ordinal with more than two values), you transfer it to the 

box called Factor(s) and if it is continuous (i.e. ratio/interval) or binary, you 

transfer it to the box called Covariate(s). 

5. Click on OK to get the results in your Output window.  

 

Part 2 

 

As of SPSS v.15, you will not get odds ratios directly in your output – you will only 

something called Estimate (which is the log odds). An easy solution is to calculate the 

odds ratios as well as the 95 % confidence intervals in Excel, based on the Estimate (log 

odds) and Std. Error (standard error) you get from SPSS.  
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Simple ordinal regression: Syntax 

  
 

Part 1 

 

PLUM DEPVAR BY INDEPVAR1 WITH INDEPVAR2 

  /CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) MXSTEP(5) PCONVERGE(1.0E-  

 6) SINGULAR(1.0E-8) 

  /LINK=LOGIT 

  /PRINT=FIT PARAMETER SUMMARY.  

 

Part 2 

 

Do the following in Excel based on the output you get from SPSS: 

 

1. Open Excel 

2. To get the OR, write in one cell: 

=EXP(Estimate) 

3. To get the lower end of the confidence interval, write in one cell:  

=EXP(Estimate-1,96*Std. Error) 

4. To get the lower end of the confidence interval, write in one cell:  

=EXP(Estimate+1,96*Std. Error) 

 

 

DEPVAR  Name of the dependent variable. 

 

BY INDEPVAR1 Name of the categorical (i.e. nominal/ordinal with more than two 

categories) independent variable.* 

or 

WITH INDEPVAR2 Name of the binary or continous independent variable. 

 

* If you make dummies of your categorical variable, you include them as INDEPVAR2 instead. 
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Simple ordinal regression with a continuous x 

 

Example 1  

Suppose we want to examine the association between unemployment days (x) and self-rated 

health (y) by means of a simple ordinal regression analysis. Unemployment days are measured 

as the total number of days in unemployment during a year, and ranges from 0 to 365. Self-

rated health has the values 1=Poor; 2=Fair; and 3=Good. Let us say that we get an OR that is 

0.93. That would mean that we have a negative association: the higher the number of 

unemployment days, the lower the odds (or likelihood) of having good health. 

 

 

 

Example 2  

In another example, we may examine the association between intelligence scores (x) and the 

amount of books read per month (y). Intelligence scores are measured by a series of tests that 

render various amounts of points, and ranges between 20 and 160 points. Book reading has 

the values 1=0 books; 2=1-3 books; and 3=4 or more books. Here, we get an OR of 1.81. We can 

thus conclude that higher intelligence scores are associated with more reading of books. 
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Simple ordinal regression with a continuous x: Example 

 

 

(Data: SPSS_data2.sav) 

 

PLUM health WITH income 

  /CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) MXSTEP(5) PCONVERGE(1.0E-

6) SINGULAR(1.0E-8) 

  /LINK=LOGIT 

  /PRINT=FIT PARAMETER SUMMARY. 

 

 

health   Self-rated health (1=Very good; 2=Good; 3=Fair; 4=Poor) 

income   Income scale 1 (Lowest step) to 10 (Highest step) 
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Output 

Look at the table called Parameter Estimates. The column called Estimate shows the coefficient 

for the variable income. Note that these coefficients are the log relative risks, and thus the null 

value is 0 (like in linear regression). The coefficient is -0.205, which means that we have a 

negative association between income and health. In other words, for every one-unit increase in 

income (i.e. moving from one income step to a higher), the risk of poor health decreases. The 

column called Sig. shows the p-value. Here, the p-value is 0.000 which means that the association 

between income and health is statistically significant (at the 0.1 % level). 

 

 

 
 

If we want to calculate the OR and the 95 % confidence intervals related to this OR, we do the 

following in Excel: 

 

1. To get the OR, write in one cell: 

=EXP(-0,205) 

2. To get the lower end of the confidence interval, write in one cell:  

=EXP(-0,205-1,96*0,004) 

3. To get the lower end of the confidence interval, write in one cell:  

=EXP(-0,205+1,96*0,004) 

 

This gives us the OR=0.81 and the 95 % CI=0.81-0.82. This confirms what the Estimate already 

told us. The interval does not include the null value (which is always x=1 in ordinal regression) 

and, thus, the results are statistically significant (at the 5 % level). 
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Simple ordinal regression with a binary x 

 

Example 1  

Suppose we want to examine the association between gender (x) and educational attainment 

(y) by means of a simple ordinal regression analysis. Gender has the values 0=Man and 

1=Woman, whereas educational attainment has the values 1=Low, 2=Medium, and 3=High. 

Now, we get an OR of 1.62. This would mean that women have higher educational attainment 

compared to men. 

 

 

 

Example 2  

Here we want to examine the association between having small children (x) and number of 

pets (y) by means of a simple ordinal regression analysis. Having small children is measured 

as either 0=No or 1=Yes. Number of pets has the values 1=No pet, 2=1-2 pets, and 3=3 or more 

pets. Let us say that we get an OR that is 1.29. We can hereby conclude that families with small 

children own more pets than families without small children. 
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Simple ordinal regression with a binary x: Example 

 

 

(Data: SPSS_data2.sav) 

 

PLUM health WITH gender 

  /CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) MXSTEP(5) PCONVERGE(1.0E-

6) SINGULAR(1.0E-8) 

  /LINK=LOGIT 

  /PRINT=FIT PARAMETER SUMMARY. 

 

 

health   Self-rated health (1=Very good; 2=Good; 3=Fair; 4=Poor) 

gender   Gender (0=Man; 1=Woman) 
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Output 

Look at the table called Parameter Estimates. The column called Estimate shows the coefficient 

for the variable gender. Note that these coefficients are the log relative risks, and thus the null 

value is 0 (like in linear regression). The coefficient is 0.185, which means that we have a 

positive association between gender and health. In other words, for every one-unit increase in 

gender (i.e. moving from man to woman), the risk of poor health increases. The column called 

Sig. shows the p-value. Here, the p-value is 0.000 which means that the association between 

gender and health is statistically significant (at the 0.1 % level). 

 

 

 
 

If we want to calculate the OR and the 95 % confidence intervals related to this OR, we do the 

following in Excel: 

 

1. To get the OR, write in one cell: 

=EXP(0,185) 

2. To get the lower end of the confidence interval, write in one cell:  

=EXP(0,185-1,96*0,015) 

3. To get the lower end of the confidence interval, write in one cell:  

=EXP(0,185+1,96*0,015) 

 

This gives us the OR=1.20 and the 95 % CI=1.17-1.24. This confirms what the Estimate already 

told us. The interval does not include the null value (which is always x=1 in ordinal regression) 

and, thus, the results are statistically significant (at the 5 % level). 
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Simple ordinal regression with a categorical x (dummies) 

 

Example 1  

We want to investigate the association between educational attainment (x) and happiness (y) 

by means of a simple ordinal regression analysis. Educational attainment has the values: 

1=Compulsory education, 2=Upper secondary education, and 3=University education. 

Happiness has the values 1=Happy, 2=Neither happy not unhappy; 3=Unhappy. Since our x-

variable is categorical with more than two categories, we have to create dummies (one 0/1 

coded variable for each category). We choose those with compulsory education as our 

reference category, meaning that this dummy will not be included in the analysis. We will thus 

get one OR for upper secondary education and one OR for university education. Each of these 

should be compared to the reference category. Let us say that we get an OR for upper 

secondary education that is 0.87 and we get an OR for university education that is 0.66. We can 

thus conclude that higher educational attainment is associated with less unhappiness (or more 

happiness). 

 

 

 

Example 2  

Suppose we are interested in the association between family type (x) and adolescent smoking 

(y). Family type has three categories: 1=Two-parent household, 2=Joint custody, and 3=Single-

parent household. Adolescent smoking has the values 1=No, 2=Occasionally, and 

3=Frequently. Since our x-variable is categorical with more than two categories, we have to 

create dummies (one 0/1 coded variable for each category). We choose adolescents living in a 

two-parent household as our reference category, meaning that this dummy will not be 

included in the analysis. We will thus get one OR for joint custody and one OR for single-parent 

household. Each of these should be compared to the reference category. The analysis results in 

an OR of 1.33 for joint custody and an OR of 3.01 for single-parent household. That would 

mean that adolescents living in family types other than two-parent households smoke more.  
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Simple ordinal regression with a categorical x (dummies): Example 

 

 

(Data: SPSS_data2.sav) 

 

PLUM health WITH age_3cat_younger age_3cat_older 

  /CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) MXSTEP(5) PCONVERGE(1.0E-

6) SINGULAR(1.0E-8) 

  /LINK=LOGIT 

  /PRINT=FIT PARAMETER SUMMARY. 

 

 

health   Self-rated health (1=Very good; 2=Good; 3=Fair; 4=Poor) 

age_3cat_younger Age intervals: 15-29 (0=No; 1=Yes) 

age_3cat_middle Age intervals: 30-49 (0=No; 1=Yes) Reference category 

age_3cat_older Age intervals: 50-98 (0=No; 1=Yes) 
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Output 

Look at the table called Parameter Estimates. The column called Estimate shows the coefficients 

for the dummies of the variable age_3cat. Note that these coefficients are the log relative risks, 

and thus the null value is 0 (like in linear regression). The coefficient for age_3cat_younger is -

0.368 and the coefficient for age_3cat_older is 0.807. This suggests that we have an overall 

positive association between age_3cat and health: the older the age, the greater the risk of ill-

health (or, to be more exact, that the younger individuals have better health compared to the 

reference category and that the older individuals have worse health compared to the reference 

category). The column called Sig. shows the p-values. Here, both p-values are 0.000 which means 

that the association between age_3cat and health is statistically significant (at the 0.1 % level). 

 

 

 
 

If we want to calculate the OR and the 95 % confidence intervals related to this OR, we do the 

following in Excel: 

 

1. To get the OR for age_3cat_younger, write in one cell: 

=EXP(-0,368) 

2. To get the lower end of the confidence interval, write in one cell:  

=EXP(-0,368-1,96*0,018) 

3. To get the lower end of the confidence interval, write in one cell:  

=EXP(-0,368+1,96*0,018) 

4. To get the OR for age_3cat_older, write in one cell: 

=EXP(0,807) 

5. To get the lower end of the confidence interval, write in one cell:  

=EXP(0,807-1,96*0,018) 

6. To get the lower end of the confidence interval, write in one cell:  

=EXP(0,807+1,96*0,018) 
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For age_3cat_younger, this gives us the OR=0.69 and the 95 % CI=0.67-0.72. For age_3cat_older, 

we get the OR=2.24 and the 95 % CI=2.16-2.32. All of this confirms what the Estimate already 

told us. The intervals do not include the null value (which is always x=1 in ordinal regression) 

and, thus, the results are statistically significant (at the 5 % level). 
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15.2 Multiple ordinal regression 

Quick facts  

Number of variables One dependent (y) 

At least two independent (x) 

Scale of variable(s) Dependent: ordinal 

Independent: categorical (nominal/ordinal) or continuous 

(ratio/interval) 
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Multiple ordinal regression: Function 

 

 
Part 1 

 

1. Go to the Menu bar, choose Analyze\Regression\Ordinal.  

2. A new window called Ordinal Regression will open.   

3. In the left box, all your variables are displayed. You choose the variable you want 

to have as your dependent variable (y) and transfer it to the box called 

Dependent.  

4. Then you choose the variables you want as your independent variables (x). If 

they are categorical (i.e. nominal/ordinal with more than two values), you 

transfer them to the box called Factor(s) and they are continuous (i.e. 

ratio/interval) or binary, you transfer them to the box called Covariate(s). It is 

possible to include variables of both types at the same time. 

5. Click on OK to get the results in your Output window.  

 

Part 2 

 

As of SPSS v.15, you will not get odds ratios directly in your output – you will only 

something called Estimate (which is the log odds). An easy solution is to calculate the 

odds ratios as well as the 95 % confidence intervals in Excel, based on the Estimate (log 

odds) and Std. Error (standard error) you get from SPSS.  
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Multiple ordinal regression: Syntax 

  
 

Part 1 

 

PLUM DEPVAR BY INDEPVARS1 WITH INDEPVARS2 

  /CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) MXSTEP(5) PCONVERGE(1.0E-  

 6) SINGULAR(1.0E-8) 

  /LINK=LOGIT 

  /PRINT=FIT PARAMETER SUMMARY.  

 

Part 2 

 

Do the following in Excel based on the output you get from SPSS: 

 

5. Open Excel 

6. To get the OR, write in one cell: 

=EXP(Estimate) 

7. To get the lower end of the confidence interval, write in one cell:  

=EXP(Estimate-1,96*Std. Error) 

8. To get the lower end of the confidence interval, write in one cell:  

=EXP(Estimate+1,96*Std. Error) 

 

 

DEPVAR  Name of the dependent variable. 

 

BY INDEPVARS1 List the names of the categorical (i.e. nominal/ordinal with more 

than two categories) independent variables.* 

or 

WITH INDEPVARS2 List the names of the binary or continous independent variables. 

 

* If you make dummies of your categorical variables, you include them as INDEPVAR2 instead. 
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Multiple ordinal regression  

 

Example  

Suppose we are interested to see if alcohol consumption (y) is related to having small children 

(x), residential area (x), and income (x). Alcohol consumption has the values 1=None/low, 

2=Medium, 3=High.  Having small children is measured as either 0=No or 1=Yes. Residential 

area has the values 1=Metropolitan, 2=Smaller city, and 3=Rural. Income is measured as the 

yearly household income from salary in thousands of SEK (ranges between 100 and 700 SEK).  

 

When we do our ordinal regression, we can include the variables “having children” and 

“income” as they are, since the first is binary and the other is continuous. The remaining 

variable – residential area – is categorical with more than two values and therefore dummies 

must be used. We create one dummy for each category of “residential area”. The first dummy 

(metropolitan) is chosen as the reference category and is thus excluded from the analysis.   

 

In the regression analysis, we get an OR for having small children that is 0.65. That means that 

those who have small children drink less alcohol. This association is adjusted for residential 

area and income. With regards to residential area, we get an OR for “smaller city” of 1.32 and 

the OR for “rural” is 2.44. This suggests that those who live in a smaller city drink more 

alcohol, and so do those living in rural areas. These results are adjusted for having small 

children and income. Finally, the OR for income is 0.95. This suggests that for every one-unit 

increase in income (i.e. for every additional one thousand SEK), the consumption of alcohol 

decreases. This association is adjusted for having small children and residential area.     
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Multiple ordinal regression: Example  

 

 

(Data: SPSS_data2.sav) 

 

PLUM health WITH income gender age_3cat_younger age_3cat_older 

  /CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) MXSTEP(5) PCONVERGE(1.0E-

6) SINGULAR(1.0E-8) 

  /LINK=LOGIT 

  /PRINT=FIT PARAMETER SUMMARY. 

 

 

health   Self-rated health (1=Very good; 2=Good; 3=Fair; 4=Poor) 

income   Income scale 1 (Lowest step) to 10 (Highest step) 

gender   Gender (0=Man; 1=Woman) 

age_3cat_younger Age intervals: 15-29 (0=No; 1=Yes) 

age_3cat_middle Age intervals: 30-49 (0=No; 1=Yes) Reference category 

age_3cat_older Age intervals: 50-98 (0=No; 1=Yes) 
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Output 

Look at the table called Parameter Estimates. The column called Estimate shows the coefficients 

for the independent variables. Note that these coefficients are the log relative risks, and thus the 

null value is 0 (like in linear regression). The coefficient for income is -0.195, which means that 

we have a negative association between income and health. In other words, for every one-unit 

increase in income (i.e. moving from one income step to a higher), the risk of poor health 

decreases. This association is adjusted for gender and age_3cat. The coefficient for gender is 

0.187, which means that we have a positive association between gender and health. In other 

words, for every one-unit increase in gender (i.e. moving from man to woman), the risk of poor 

health increases. This association is adjusted for income and age_3cat. Then we have the 

dummies for age_3cat: the coefficient for age_3cat_younger is -0.371 and the coefficient for 

age_3cat_older is 0.757. This suggests that we have an overall positive association between 

age_3cat and health: the older the age, the greater the risk of ill-health (or, to be more exact, that 

the younger individuals have better health compared to the reference category and that the 

older individuals have worse health compared to the reference category). This association is 

adjusted for income and gender. 

 

The column called Sig. shows the p-values. Here, all the p-values are 0.000 which means that the 

mutually adjusted associations analyzed here are statistically significant (at the 0.1 % level). 

 

 

 
 

 

If we want to calculate the odds ratios and the 95 % confidence intervals related to these odds 

ratios, we do the following in Excel: 

 

1. To get the OR for income, write in one cell: 

=EXP(-0,195) 
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2. To get the lower end of the confidence interval, write in one cell:  

=EXP(-0,195-1,96*0,004) 

3. To get the lower end of the confidence interval, write in one cell:  

=EXP(-0,195+1,96*0,004) 

4. To get the OR for gender, write in one cell: 

=EXP(0,187) 

5. To get the lower end of the confidence interval, write in one cell:  

=EXP(0,187-1,96*0,016) 

6. To get the lower end of the confidence interval, write in one cell:  

=EXP(0,187+1,96*0,016) 

7. To get the OR for age_3cat_younger, write in one cell: 

=EXP(-0,371) 

8. To get the lower end of the confidence interval, write in one cell:  

=EXP(-0,371-1,96*0,019) 

9. To get the lower end of the confidence interval, write in one cell:  

=EXP(-0,371+1,96*0,019) 

10. To get the OR for age_3cat_older, write in one cell: 

=EXP(0,757) 

11. To get the lower end of the confidence interval, write in one cell:  

=EXP(0,757-1,96*0,019) 

12. To get the lower end of the confidence interval, write in one cell:  

=EXP(0,757+1,96*0,019) 

 

These are the results: 

income: OR=0.82, 95 % CI=0.82-0.83 

gender: OR=1.21, 95 % CI=1.17-1.24 

age_3cat_younger: OR=0.69, 95 % CI=0.66-0.72 

age_3cat_older: OR=2.13, 95 % CI=2.05-2.21 

 

All of this confirms what the Estimates already told us. The intervals do not include the null 

value (which is always x=1 in ordinal regression) and, thus, the results are statistically 

significant (at the 5 % level). 
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15.3 Model diagnostics 

Parallel lines 

The assumptions behind ordinal regression are different from linear regression. For example, 

we do not need to assume linearity, homoscedasticity or normality. Multicollinearity should 

however be avoided (i.e. strong correlations between the x-variables in multiple ordinal 

regression – check with correlation analysis; see Chapter 9). One critical thing that we need to 

consider is called the “proportional odds assumption” or the “parallel lines assumptions”. The 

assumption behind ordinal regression analysis is that the coefficients that describe the 

relationship between, for example, the lowest versus all higher categories of the outcome 

variable are the same as those that describe the relationship between the next lowest category 

and all higher categories, and so on. Because the relationships between all pairs of categories are 

assumed to be the same, we only get one estimate for each x-variable.  

 

The parallel lines assumption 

The effect of x is the same for each pair of categories in y 

 

If the parallel lines assumption is violated, we should consider another type of analysis: either 

we could use multinomial regression (see Chapter 16) or we could change our ordinal outcome 

into a binary version and use logistic regression instead (see Chapter 14).  
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Parallel lines assumption: Function 

 

 
1. Go to the Menu bar, choose Analyze\Regression\Ordinal.  

2. A new window called Ordinal Regression will open.   

3. In the left box, all your variables are displayed. You choose the variable you want 

to have as your dependent variable (y) and transfer it to the box called 

Dependent.  

4. Then you choose the variables you want as your independent variables (x). If 

they are categorical (i.e. nominal/ordinal with more than two values), you 

transfer them to the box called Factor(s) and they are continuous (i.e. 

ratio/interval) or binary, you transfer them to the box called Covariate(s). It is 

possible to include variables of both types at the same time. 

5. Click on Output. 

6. Tick the box called Test of parallel lines. 

7. Click on Continue. 

8. Click on OK to get the results in your Output window.  
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Parallel lines assumption: Syntax 

  
 

PLUM DEPVAR BY INDEPVARS1 WITH INDEPVARS2 

  /CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) MXSTEP(5) PCONVERGE(1.0E-  

 6) SINGULAR(1.0E-8) 

  /LINK=LOGIT 

  /PRINT=FIT PARAMETER SUMMARY TPARALELL.  

 

 

DEPVAR  Name of the dependent variable. 

 

BY INDEPVARS1 Name of the categorical (i.e. nominal/ordinal with more than two 

categories) independent variables.* 

or 

WITH INDEPVARS2 Name of the binary or continous independent variables. 

 

TPARALELL  Order a test of the parallel lines assumption 

* If you make dummies of your categorical variables, you include them as INDEPVAR2 instead. 
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Parallel lines assumption: Example  

 

 

(Data: SPSS_data2.sav) 

 

PLUM health WITH income gender age_3cat_younger age_3cat_older 

  /CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) MXSTEP(5) PCONVERGE(1.0E-

6) SINGULAR(1.0E-8) 

  /LINK=LOGIT 

  /PRINT=FIT PARAMETER SUMMARY TPARALELL. 

 

 

health   Self-rated health (1=Very good; 2=Good; 3=Fair; 4=Poor) 

income   Income scale 1 (Lowest step) to 10 (Highest step) 

gender   Gender (0=Man; 1=Woman) 

age_3cat_younger Age intervals: 15-29 (0=No; 1=Yes) 

age_3cat_middle Age intervals: 30-49 (0=No; 1=Yes) Reference category 

age_3cat_older Age intervals: 50-98 (0=No; 1=Yes) 
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Output 

Look at the table called Test of Parallel Lines. The column called Sig. shows the p-value for the 

test of the parallel lines assumption. If the p-value is above 0.05, the test is statistically non-

significant and the assumption has not been violated. If the p-value is below 0.05, the test is 

statistically significant and the assumption has been violated. In the current example, the p-value 

is 0.000 and therefore the model violates the parallel lines assumption – therefore, we should 

consider using another type of regression analysis.  
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16. MULTINOMIAL REGRESSION 

Outline 

16.1 Simple multinomial regression 

16.2 Multiple multinomial regression 

16.3 Model diagnostics 
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Introduction 

Multinomial regression is used when y is nominal with more than two categories, i.e. 

polytomous (see Section 2.2). However, it is a good idea not to have too many categories because 

the interpretation quickly gets quite messy (if you have more than 5-6, try to collapse some of 

the categories).  

 

If you have only one x, it is called “simple” multinomial regression, and if you have more than 

one x, it is called “multiple” multinomial regression. Regardless of whether you are doing a 

simple or a multiple regression, the x-variables can be categorical (nominal/ordinal) and/or 

continuous (ratio/interval). 

 

Key information from multinomial regression 

1. Direction  

Negative Relative risk ratio below 1 

Positive Relative risk ratio above 1 

2. Effect size  

Relative risk ratio The relative risk of the outcome being one category divided by 

the relative risk that the outcome is the baseline category, for 

every one-unit increase in x 

3. Statistical significance  

P-value p<0.05 Statistically significant at the 5 % level 

p<0.01 Statistically significant at the 1 % level 

p<0.001 Statistically significant at the 0.1 % level 

95 % Confidence intervals Interval includes 1: 

Statistically significant at the 5 % level 

Interval does not include 1:  

Statistically non-significant at the 5 % level 
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Relative risk ratios (RRR) 

The most complicated part about the multinomial regression is that we decide on a reference 

category in the outcome variable as well (for linear, logistic and ordinal regression, we only had 

to deal with reference categories for the x-variables). To make it easier to distinguish between 

reference categories in x on the one hand, and in y on the other hand, the following text will 

continue to talk about “reference category” when x-variables are concerned but use “reference 

level” with regard to the y-variable. 

 

All right, so our outcome should have a reference level – what does that mean? Let us use an 

example: 

 

 

Example 

We want to investigate the association between gender (x) and preferred ice-cream flavour 

(y). Gender has the values 0=Man and 1=Women. Preferred ice-cream flavour has the values: 

1=Vanilla, 2=Chocolate, 3=Strawberry. We choose the first category (vanilla) as our reference 

level. When we run the multinomial regression analysis, we will get two relative risk ratios; 

one for the risk of the outcome being chocolate instead of vanilla depending on the values of 

the x-variable, and one for the outcome being strawberry instead of vanilla depending on the 

values of the x-variable.  

 

 

So, basically multinomial regression is used to predict the “relative risk” of being a “case” based 

on the values of the x-variable(s). Just as for linear regression analysis, we get a coefficient (log 

relative risk) that shows the effect of x on y. However, because multinomial regression is based 

on other assumptions that linear regression, we cannot interpret these coefficients very easily. 

Instead we focus on something called the “relative risk ratio” (“RRR”). We can get the relative 

risk ratio by taking the “exponent” of the coefficient: “exp(B)”.  

 

So what is this about “relative risk ratios” – what happened to odds ratios? Well, these are two 

different statistical concepts but they are very similar. As previously discussion in e.g. Chapters 

14 and 15, the OR is the odds of the outcome being a case divided by the odds of the outcome 

being a non-case, for every one-unit increase in x. The RRR is the risk of the outcome being a 

case given a certain value of x, divided by the risk of the outcome being a case given another 
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value of x. This may sound complicated, but the take-home message is that odds ratios and 

relative risk ratios are interpreted in the similar way.  

 

The RRR is interpreted in the following way: “for every one-unit increase in x, y 

increases/decreases by [the RRR]”. Accordingly, if you get a negative RRR (below 1), you say: 

“for every one-unit increase in x, y decreases by [the RRR]”, and if you get a positive RRR (above 

1), you say: “for every one-unit increase in x, y increases by [the RRR]”. However – and this is 

important – in multinomial regression we have to deal with the fact that our outcome has a 

reference level to take into consideration. Therefore, the RRR in multinomial regression analysis 

is interpreted in the following way: “for every one-unit increase in x, the risk of y being 

[Category y2] compared to y being [Category y1; reference level] increases/decreases by [the 

RRR]”, and for every one-unit increase in x, the risk of y being [Category y3] compared to y being 

[Category y1; reference level] increases/decreases by [the RRR]”, and so on. 

 

Unlike linear regression, where the null value (i.e. value that denotes no difference) is 0, the null 

value for multinomial regression is 1. Also note that a RRR can never be negative – it can range 

between 0 and infinity. What the RRR actually stands for – and whether we can say that an effect 

is small or big – depends on the values of x and y.  

 

P-values and confidence intervals 

In multinomial regression analysis you can of course get information about statistical 

significance, in terms of both p-values and confidence intervals. The p-values and the confidence 

intervals will give you partly different information, but: they are not contradictory. If the p-value 

is below 0.05, the 95 % confidence interval will not include 1 (statistical significance at the 5 % 

level), and if the p-value is above 0.05, the 95 % confidence interval will include 1 (statistical 

non-significance at the 5 % level). 

 

Note that when you look at the p-value, you can rather easily distinguish between the 

significance levels (i.e. you can directly say whether you have statistical significance at the 5 % 

level, the 1 % level, or the 0.1 % level). When it comes to confidence intervals, SPSS will by 

default choose 95 % level confidence intervals (i.e. statistical significance at the 5 % level). For 

some analyses, it is however possible to change the confidence level for the intervals. For 

example, you may instruct SPSS to show 99 % confidence intervals instead. 
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R-Squared 

In contrast to linear regression, “R-Squared” or “R2” is not very usable (again, because of the 

assumptions behind multinomial regression). You will, however, get a value for the so-called 

“Nagelkerke R Square” which is similar to the R-squared. 

 

Simple versus multiple regression models 

The difference between simple and multiple regression models, is that in a multiple regression 

each x-variable’s effect on y is estimated while taking into account the other x-variables’ effects 

on y. We then say that these other x-variables are “held constant”, or “adjusted for”, or 

“controlled for”. Because of this, multiple regression analysis is a way of dealing with the issue of 

“confounding” variables, and to some extent also “mediating” variables (see Section 11.2). 

 

It is highly advisable to run a simple multinomial regression for each of the x-variables before 

including them in a multiple regression. Otherwise, you will not have anything to compare the 

adjusted relative risk ratios with (i.e. what happened to the RRR when other x-variables were 

included in the analysis). Including multiple x-variables in the same model usually (but not 

always) means that the associations are reduced in strength – which would of course be 

expected if the x-variables overlapped in their effect on y.      

 

Define your analytical sample 

Before you begin, make sure that you have defined your analytical sample correctly (see Section 

12.6).  
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16.1 Simple multinomial regression 

Quick facts  

Number of variables One dependent (y) 

One independent (x) 

Scale of variable(s) Dependent: nominal (with more than two categories) 

Independent: categorical (nominal/ordinal) or continuous 

(ratio/interval) 
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Simple multinomial regression: Function 

 

 
1. Go to the Menu bar, choose Analyze\Regression\Multinomial Logistic.  

2. A new window called Multinomial Logistic Regression will open.   

3. In the left box, all your variables are displayed. You choose the variable you want 

to have as your dependent variable (y) and transfer it to the box called Dependent.  

4. Click on Reference Category to choose which category of your outcome you want 

to have as your reference level: First Category (lowest value), Last Category 

(highest value) or Custom (any value you want).  

5. Then you choose the variable you want as your independent variable (x). If it is 

categorical (i.e. nominal/ordinal with more than two values), you transfer it to the 

box called Factor(s) and if it is continuous (i.e. ratio/interval) or binary, you 

transfer it to the box called Covariate(s). 

6. Click on OK to get the results in your Output window.  
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Simple multinomial regression: Syntax 

  
 

NOMREG DEPVAR (BASE=LAST ORDER=ASCENDING) BY INDEPVAR1 WITH INDEPVAR2 

  /CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0)   

PCONVERGE(0.000001)  

    SINGULAR(0.00000001) 

  /MODEL 

  /STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR) 

REMOVALMETHOD(LR) 

  /INTERCEPT=INCLUDE 

  /PRINT=PARAMETER SUMMARY LRT CPS STEP MFI. 

 

 

DEPVAR  Name of the dependent variable. 

 

BY INDEPVAR1 Name of the categorical (i.e. nominal/ordinal with more than two 

categories) independent variable.* 

or 

WITH INDEPVAR2 Name of the binary or continous independent variable. 

 

* If you make dummies of your categorical variable, you include them as INDEPVAR2 instead. 
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Simple multinomial regression with a continuous x 

 

Example 1  

Suppose we want to examine the association between unemployment days (x) and type of 

hospitalization (y) by means of a simple multinomial regression analysis. Unemployment days 

are measured as the total number of days in unemployment during a year, and ranges from 0 

to 365. Type of hospitalization has the values 1=No hospitalization, 2=Out-patient care, and 

3=In-patient care. We choose “no hospitalization” as our reference level. Let us say that we get 

a RRR for unemployment days and out-patient care that is 2.88. That would mean that for 

every one-unit increase of employment days, the risk of experiencing out-patient care 

compared to no hospitalization increases. Moreover, we get a RRR for unemployment days and 

in-patient care that is 4.02. This would suggest that for every one-unit increase of employment 

days, the risk of experiencing in-patient care compared to no hospitalization increases. 

 

 

 

Example 2  

In another example, we may examine the association between intelligence scores (x) and the 

preferred type of books (y). Intelligence scores are measured by a series of tests that render 

various amounts of points, and ranges between 20 and 160 points. Preferred type of books has 

the values 1=Fiction, 2=Non-fiction, 3=Comic books. We choose “fiction” as our reference level. 

Here, we get a RRR of 1.40 for intelligence scores and non-fiction, meaning that for every one-

unit increase of intelligence, the likelihood of preferring non-fiction books increases. For 

intelligence scores and comic books, the RRR is 0.92. This suggests that for every one-unit 

increase of intelligence, the likelihood of preferring comic books decreases. 
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Simple multinomial regression with a continuous x: Example 

 

 

(Data: SPSS_data1.sav) 

 

NOMREG bfast (BASE=FIRST ORDER=ASCENDING) WITH age 

  /CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0) 

PCONVERGE(0.000001)  

    SINGULAR(0.00000001) 

  /MODEL 

  /STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR) 

REMOVALMETHOD(LR) 

  /INTERCEPT=INCLUDE 

  /PRINT=PARAMETER SUMMARY LRT CPS STEP MFI. 

 

 

bfast   Preferred breakfast (1=Energy bar; 2=Oatmeal; 3=Cereal) 

age   Age in years (Min=18; Max=79) 
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Output 

Look at the table called Parameter Estimates. The column called Exp(B) shows the relative risk 

ratio (RRR) for the variable age. The RRR for Oatmeal is 1.116, which means that the likelihood 

of preferring oatmeal over an energy bar increases for every one-unit increase in age. The RRR is 

1.026 for Cereal, which means that the likelihood of preferring cereal over an energy bar also 

increases for every one-unit increase in age. The column called Sig. shows the p-value. Here, 

both p-values are 0.000 which means that the results are statistically significant (at the 0.1 % 

level). Then we look at the part of the table called 95 % Confidence Interval for Exp (B). This 

gives us the lower confidence limit (Lower Bound) and the upper confidence limit (Upper 

Bound). The intervals do not include the null value (which is always x=1 in multinomial 

regression) and, thus, the results are statistically significant (at the 5 % level).  
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Simple multinomial regression with a binary x 

 

Example 1  

Suppose we want to examine the association between gender (x) and political views (y) by 

means of a simple multinomial regression analysis. Gender has the values 0=Man and 

1=Woman, whereas political views has the values 1=Conservative, 2=Centre, and 3=Liberal. 

The category “centre” is chosen as the reference level. Now, we get a RRR of 0.82 for 

conservative, which means that women are less likely to be conservative than centre 

compared to men. The RRR for liberal is 1.39, suggesting that women are more likely to be 

liberal than centre compared to men.  

 

 

 

Example 2  

Here we want to examine the association between having small children (x) and the type of 

pet owned (y) by means of a simple multinomial regression analysis. Having small children is 

measured as either 0=No or 1=Yes. Type of pet owned has the values 1=No pet, 2=Cat, 3=Dog, 

and 4=Other type of pet. The category “no pet” is chosen as the reference level. Let us say that 

we get a RRR for cat that is 1.50. This means that those who have small children are more 

likely to own a cat than no pet at all, compared to those who do not have small children. The 

RRR for dog is 1.75, suggesting that those who have small children are more likely to own a 

dog than no pet at all, compared to those who do not have small children. Moreover, the RRR 

for “other type of pet” is 1.96, which tells us that those who have small children are more likely 

to own “other type of pet” than no pet at all, compared to those who do not have small 

children. 
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Simple multinomial regression with a binary x: Example 

 

 

(Data: SPSS_data1.sav) 

 

NOMREG bfast (BASE=FIRST ORDER=ASCENDING) WITH gender 

  /CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0) 

PCONVERGE(0.000001)  

    SINGULAR(0.00000001) 

  /MODEL 

  /STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR) 

REMOVALMETHOD(LR) 

  /INTERCEPT=INCLUDE 

  /PRINT=PARAMETER SUMMARY LRT CPS STEP MFI. 

 

 

bfast   Preferred breakfast (1=Energy bar; 2=Oatmeal; 3=Cereal) 

gender   Gender (0=Man; 1=Woman) 
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Output 

Look at the table called Parameter Estimates. The column called Exp(B) shows the relative risk 

ratio (RRR) for the variable gender. The RRR for Oatmeal is 1.030, which means that women are 

more likely than men to prefer oatmeal over an energy bar. The RRR for Cereal is 1.029, which 

means that women are more likely than men to also prefer cereal over an energy bar. The 

column called Sig. shows the p-value. Here, both p-values are above 0.05 which means that the 

results are not statistically significant. Then we look at the part of the table called 95 % 

Confidence Interval for Exp (B). This gives us the lower confidence limit (Lower Bound) and the 

upper confidence limit (Upper Bound). The intervals include the null value (which is always x=1 

in multinomial regression) and, thus, the results are not statistically significant (at the 5 % 

level).  
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Simple multinomial regression with a categorical x (dummies) 

 

Example 1  

We want to investigate the association between educational attainment (x) and building type 

(y) by means of a simple multinomial regression analysis. Educational attainment has the 

values: 1=Compulsory education, 2=Upper secondary education, and 3=University education.  

Building type has the values 1=Apartment, 2=Town house, and 3=Villa. We choose 

“apartment” as our reference level. Since our x-variable is categorical with more than two 

categories, we have to create dummies (one 0/1 coded variable for each category). We choose 

those with compulsory education as our reference category, meaning that this dummy will not 

be included in the analysis. The RRR for upper secondary education in combination with town 

house is 2.01, meaning that those with upper secondary education are more likely to live in a 

town house than an apartment, compared to those with compulsory education. The RRR for 

upper secondary education in combination with villa is 1.32, meaning that those with upper 

secondary education are more likely to live in a villa than an apartment, compared to those 

with compulsory education. For university education in combination with town house, the 

RRR is 0.95, suggesting that those who have university education are less likely to live in a 

town house than an apartment compared to those with compulsory education. Finally, the 

RRR for university education in combination with villa is 3.44, meaning that those with 

university education are more likely to live in a villa than an apartment, compared to those 

with compulsory education. 
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Example 2  

Suppose we are interested in the association between family type (x) and adolescent health 

behaviour (y). Family type has three categories: 1=Two-parent household, 2=Joint custody, 

and 3=Single-parent household. Adolescent health behaviour has the values 1=No smoking or 

alcohol consumption, 2=Smoking, 3=Alcohol consumption, 4=Both smoking and alcohol 

consumption. We choose the category no smoking or alcohol consumption as the reference 

level. Since our x-variable is categorical with more than two categories, we have to create 

dummies (one 0/1 coded variable for each category). We choose adolescents living in a two-

parent household as our reference category, meaning that this dummy will not be included in 

the analysis. The RRR for the combination joint custody and smoking is 1.20, meaning that 

adolescents living in joint custody are more likely to smoke than not to smoke or drink alcohol 

compared to those living in a two-parent household. The RRR for the combination single-

parent household and smoking is 1.49, meaning that adolescents living in single-parent 

household are more likely to smoke than not to smoke or drink alcohol compared to those 

living in a two-parent household. The RRR for the combination joint custody and alcohol 

consumption is 1.00, meaning that adolescents living in joint custody are as likely to drink 

alcohol as not to smoke or drink alcohol compared to those living in a two-parent household. 

The RRR for the combination single-parent household and alcohol consumption is 2.02, 

meaning that adolescents living in single-parent household are more likely to drink alcohol 

than not to smoke or drink alcohol compared to those living in a two-parent household. The 

RRR for the combination joint custody and both smoking and alcohol consumption is 1.55, 

meaning that adolescents living in joint custody are more likely to both smoke and drink 

alcohol than not to smoke or drink alcohol compared to those living in a two-parent 

household. The RRR for the combination single-parent household and both smoking and 

alcohol consumption is 4.45, meaning that adolescents living in single-parent household are 

more likely to both smoke and drink alcohol than not to smoke or drink alcohol compared to 

those living in a two-parent household. 
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Simple multinomial regression with a categorical x (dummies): Example 

 

(Data: SPSS_data1.sav) 

 

NOMREG bfast (BASE=FIRST ORDER=ASCENDING) WITH edcat_no edcat_somecoll 

edcat_colldeg edcat_postgrad 

  /CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0) 

PCONVERGE(0.000001)  

    SINGULAR(0.00000001) 

  /MODEL 

  /STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR) 

REMOVALMETHOD(LR) 

  /INTERCEPT=INCLUDE 

  /PRINT=PARAMETER SUMMARY LRT CPS STEP MFI. 

 

 

bfast   Preferred breakfast (1=Energy bar; 2=Oatmeal; 3=Cereal) 

edcat_no           Did not complete high school  (0=No; 1=Yes) 

edcat_highsc   High school degree  (0=No; 1=Yes) Reference group 

edcat_somecoll Some college  (0=No; 1=Yes) 

edcat_colldeg  College degree  (0=No; 1=Yes) 

edcat_postgrad Post-undergraduate degree  (0=No; 1=Yes) 
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Output 

Look at the table called Parameter Estimates. The column called Exp(B) shows the relative risk 

ratios (RRR) for the dummies of the variable edcat. The first part of the table concerns 

educational differences in Energy bar versus Oatmeal. The RRR for the combination edcat_no 

and Oatmeal is 1.568, which means that those who did not complete high school are more likely 

to prefer oatmeal over an energy bar compared to those with a high school degree. The RRR is 

for the combination edcat_somecoll and Oatmeal is 0.922, which means that those who have 

some college education are less likely to prefer oatmeal over an energy bar compared to those 

with a high school degree. The RRR for the combination edcat_colldeg and Oatmeal is 1.032, 

which means that those who have a college degree are more likely to prefer oatmeal over an 

energy bar compared to those with a high school degree. The RRR for the combination 

edcat_postgrad and Oatmeal is 0.955, which means that those who have a post-undergraduate 

degree are less likely to prefer oatmeal over an energy bar compared to those with a high school 

degree.  

 

The second part of the table concerns educational differences in Energy bar versus Cereal. The 

RRR for the combination edcat_no and Cereal is 1.049, which means that those who did not 

complete high school are more likely to prefer cereal over an energy bar compared to those with 

a high school degree. The RRR for the combination edcat_somecoll and Cereal is 1.039, which 

means that those who have some college education are more likely to prefer cereal over an 

energy bar compared to those with a high school degree. The RRR for the combination 

edcat_colldeg and Cereal is 1.075, which means that those who have a college degree are more 

likely to prefer cereal over an energy bar compared to those with a high school degree. The RRR 

for the combination edcat_postgrad and Cereal is 1.047, which means that those who have a 

post-undergraduate degree are more likely to prefer cereal over an energy bar compared to 

those with a high school degree. 

 

The column called Sig. shows the p-values. Here, most p-values are above 0.05 which means that 

the results are not statistically significant. The only significant difference is for edcat_no and 

Oatmeal (p=0.000) meaning that those who did not complete high school are significantly more 

likely to prefer oatmeal over an energy bar compared to those with a high school degree (at the 

0.1 % level). Then we look at the part of the table called 95 % Confidence Interval for Exp (B). 

This gives us the lower confidence limit (Lower Bound) and the upper confidence limit (Upper 

Bound). Most intervals – with the exception of edcat_no and Oatmeal – include the null value 

(which is always x=1 in multinomial regression) and, thus, the overall results are not statistically 

significant.  
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16.2 Multiple multinomial regression 

Quick facts  

Number of variables One dependent (y) 

At least two independent (x) 

Scale of variable(s) Dependent: nominal (with more than two categories) 

Independent: categorical (nominal/ordinal) or continuous 

(ratio/interval) 
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Multiple multinomial regression: Function 

 

 
1. Go to the Menu bar, choose Analyze\Regression\Multinomial Logistic.  

2. A new window called Multinomial Logistic Regression will open.   

3. In the left box, all your variables are displayed. You choose the variable you want 

to have as your dependent variable (y) and transfer it to the box called Dependent.  

4. Click on Reference Category to choose which category of your outcome you want 

to have as your reference level: First Category (lowest value), Last Category 

(highest value) or Custom (any value you want).  

5. Then you choose the variables you want as your independent variables (x). If they 

are categorical (i.e. nominal/ordinal with more than two values), you transfer 

them to the box called Factor(s) and they are continuous (i.e. ratio/interval) or 

binary, you transfer them to the box called Covariate(s). It is possible to include 

variables of both types at the same time. 

6. Click on OK to get the results in your Output window.  
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Multiple multinomial regression: Syntax 

  
 

NOMREG DEPVAR (BASE=LAST ORDER=ASCENDING) BY INDEPVARS1 WITH INDEPVARS2 

  /CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0)   

PCONVERGE(0.000001)  

    SINGULAR(0.00000001) 

  /MODEL 

  /STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR) 

REMOVALMETHOD(LR) 

  /INTERCEPT=INCLUDE 

  /PRINT=PARAMETER SUMMARY LRT CPS STEP MFI. 

 

 

DEPVAR  Name of the dependent variable. 

 

BY INDEPVARS1 List the names of the categorical (i.e. nominal/ordinal with more 

than two categories) independent variables.* 

or 

WITH INDEPVARS2 List the names of the binary or continous independent variables. 

 

* If you make dummies of your categorical variables, you include them as INDEPVAR2 instead. 
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Multiple multinomial regression 

 

Example  

Suppose we are interested to see if smoking (y) is related to having small children (x), 

residential area (x), and income (x). Smoking has the values 1=Non-smoker, 2=Former 

smoker, and 3=Current smoker. The category “non-smoker” is chosen as the reference level. 

Having small children is measured as either 0=No or 1=Yes. Residential area has the values 

1=Metropolitan, 2=Smaller city, and 3=Rural. Income is measured as the yearly household 

income from salary in thousands of SEK (ranges between 100 and 700 SEK). When we do our 

multinomial regression, we can include the variables “having children” and “income” as they 

are, since the first is binary and the other is continuous. The remaining variable – residential 

area – is categorical with more than two values and therefore dummies must be used. We 

create one dummy for each category of “residential area”. The first dummy (metropolitan) is 

chosen as the reference category and is thus excluded from the analysis.   

 

In the regression analysis, we get a RRR of 1.19 for having small children and former smoker, 

suggesting that those who have small children are more likely to be former smokers than non-

smokers compared to those who do not have small children. Then we get a RRR of 0.77 for 

having small children and being a current smoker, which means that those who have small 

children are less likely to be current smokers than non-smokers compared to those who do 

not have small children. These results are adjusted for residential area and income. The RRR 

for living in a smaller city and being a former smoker is 2.09, which suggests that those who 

live in a smaller city are more likely to be former smokers than non-smokers compared to 

those who live in a metropolitan area. The RRR for living in a smaller city and being a current 

smoker is 3.71, which suggests that those who live in a smaller city are more likely to be 

current smokers than non-smokers compared to those who live in a metropolitan area. The 

RRR for living in an urban area and being a former smoker is 3.59, which suggests that those 

who live in an urban area are more likely to be former smokers than non-smokers compared 

to those who live in a metropolitan area. The RRR for living in an urban area and being a 

current smoker is 5.01, which suggests that those who live in an urban area are more likely to 

be current smokers than non-smokers compared to those who live in a metropolitan area. 

These results are adjusted for having small children and income. With regard to income, the 

RRR of being a former smoker is 0.93, suggesting that for every one-unit increase in income, 

the risk of being a former smoker decreases. The RRR of being a current smoker is 0.78, which 
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means that for every one-unit increase in income, the risk of being a current smoker also 

decreases. These results are adjusted for having small children and residential area. 
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Multiple multinomial regression: Example 

 

 

(Data: SPSS_data1.sav) 

 

NOMREG bfast (BASE=FIRST ORDER=ASCENDING) WITH age gender edcat_no edcat_somecoll 

edcat_colldeg edcat_postgrad        

  /CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0) 

PCONVERGE(0.000001)  

    SINGULAR(0.00000001) 

  /MODEL 

  /STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR) 

REMOVALMETHOD(LR) 

  /INTERCEPT=INCLUDE 

  /PRINT=PARAMETER SUMMARY LRT CPS STEP MFI. 

 

 

bfast   Preferred breakfast (1=Energy bar; 2=Oatmeal; 3=Cereal) 

age   Age in years (Min=18; Max=79) 

gender   Gender (0=Man; 1=Woman) 

edcat_no           Did not complete high school  (0=No; 1=Yes) 

edcat_highsc   High school degree  (0=No; 1=Yes) Reference group 

edcat_somecoll Some college  (0=No; 1=Yes) 

edcat_colldeg  College degree  (0=No; 1=Yes) 

edcat_postgrad Post-undergraduate degree  (0=No; 1=Yes) 
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Output 

Look at the table called Parameter Estimates. The column called Exp(B) shows the mutually 

adjusted relative risk ratios for the variables gender, age, and edcat. The first part of the table 

concerns differences between Energy bar and Oatmeal. The RRR for gender and Oatmeal is 

1.059, which means that women are more likely to prefer oatmeal over energy bars. For age and 

Oatmeal, the RRR is 1.117, suggesting that for every one-unit increase in age, individuals are 

more likely to prefer oatmeal over energy bars. The RRR for the combination edcat_no and 

Oatmeal is 0.966, which means that those who did not complete high school are less likely to 

prefer oatmeal over an energy bar compared to those with a high school degree. The RRR for the 

combination edcat_somecoll and Oatmeal is 0.859, which means that those who have some 

college education are less likely to prefer oatmeal over an energy bar compared to those with a 

high school degree. The RRR for the combination edcat_colldeg and Oatmeal is 1.086, which 

means that those who have a college degree are more likely to prefer oatmeal over an energy bar 

compared to those with a high school degree. The RRR for the combination edcat_postgrad and 

Oatmeal is 0.939, which means that those who have a post-undergraduate degree are less likely 

to prefer oatmeal over an energy bar compared to those with a high school degree.  

 

The second part of the table concerns educational differences in Energy bar versus Cereal. For 

gender and Cereal, the RRR is 1.042. This means that women are more likely to prefer cereal 

over energy bars. The RRR for age and Cereal is 1.027, suggesting that for every one-unit 

increase in age, individuals are more likely to prefer cereal over energy bars. The RRR for the 

combination edcat_no and Cereal is 0.911, which means that those who did not complete high 

school are less likely to prefer cereal over an energy bar compared to those with a high school 

degree. The RRR for the combination edcat_somecoll and Cereal is 1.007, which means that 

those who have some college education are about as likely to prefer cereal over an energy bar 

compared to those with a high school degree. The RRR for the combination edcat_colldeg and 

Cereal is 1.028, which means that those who have a college degree are more likely to prefer 

cereal over an energy bar compared to those with a high school degree. The RRR for the 

combination edcat_postgrad and Cereal is 0.959, which means that those who have a post-

undergraduate degree are less likely to prefer cereal over an energy bar compared to those with 

a high school degree. 

 

The column called Sig. shows the p-values. Here, most p-values are above 0.05 which means that 

the results are not statistically significant (at the 5 % level). However, age is the exception 

(p=0.000): increased age is associated at a statistically significant level (the 0.1 % level) with 

preferring both oatmeal and cereal over energy bars. Then we look at the part of the table called 
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95 % Confidence Interval for Exp (B). This gives us the lower confidence limit (Lower Bound) 

and the upper confidence limit (Upper Bound). Most intervals – with the exception of the ones 

concerning age – include the null value (which is always x=1 in multinomial regression) and, 

thus, the overall results are not statistically significant (at the 5 % level).  
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16.3 Model diagnostics 

The assumptions behind multinomial regression are different from linear regression. For 

example, we do not need to assume linearity, homoscedasticity or normality. Multicollinearity 

should however be avoided (i.e. strong correlations between the x-variables in multiple ordinal 

regression – check with correlation analysis; see Chapter 9). It is not very easy to evaluate model 

fit with multinomial regression. One alternative is to carry out a bunch of separate logistic 

regressions. For example, if the outcome was smoking and that variable had the categories 

1=Non-smoker, 2=Former smoker, and 3=Current smoker, we could make two separate logistic 

regressions. The first would have the outcome 0=Non-smoker and 1=Former smoker, whereas 

the second would have the outcome 0=Non-smoker and 1=Current smoker. Then we could use 

the same type of model diagnostics as for logistic regression (see Section 14.3). Another option 

to assess the model’s goodness of fit – or basically its predictive power – is to use a “likelihood 

ratio test” (which is a type of chi-square test). The likelihood ratio test gives an answer to 

whether the estimated model (i.e. the model with one or more x-variables) predicts the outcome 

better than the null model (i.e. a model without any x-variables).   

 

Estimate the goodness of fit 

Likelihood ratio test Does the estimated model predict the outcome better than the 

null model? 
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Likelihood ratio test: Example 

 

 

(Data: SPSS_data1.sav) 

 

NOMREG bfast (BASE=FIRST ORDER=ASCENDING) WITH gender age edcat_no edcat_somecoll 

edcat_colldeg edcat_postgrad        

  /CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0) 

PCONVERGE(0.000001)  

    SINGULAR(0.00000001) 

  /MODEL 

  /STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR) 

REMOVALMETHOD(LR) 

  /INTERCEPT=INCLUDE 

  /PRINT=PARAMETER SUMMARY LRT CPS STEP MFI. 

 

 

bfast   Preferred breakfast (1=Energy bar; 2=Oatmeal; 3=Cereal) 

age   Age in years (Min=18; Max=79) 

gender   Gender (0=Man; 1=Woman) 

edcat_no           Did not complete high school  (0=No; 1=Yes) 

edcat_highsc   High school degree  (0=No; 1=Yes) Reference group 

edcat_somecoll Some college  (0=No; 1=Yes) 

edcat_colldeg  College degree  (0=No; 1=Yes) 

edcat_postgrad Post-undergraduate degree  (0=No; 1=Yes) 
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Output 

Look at the table called Model Fitting Information. The column called Sig. shows the p-value for 

the likelihood ratio test. If the p-value is above 0.05, the test is statistically non-significant and 

the estimated model fits the data better than the empty model. If the p-value is below 0.05, the 

test is statistically significant and this means that the estimated model does not fit the data 

better. In the current example, the p-value is 0.000 and therefore we can say that the estimated 

model fits the data rather poorly.  
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17. INTERACTION ANALYSIS 

Outline 

17.1 Interaction analysis for linear regression 

17.2 Interaction analysis for logistic regression 
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Introduction 

 

 

 

 

 

 

 

 

 

A moderator (or effect modifier) is a variable (z) that influences the very association between 

the x-variable and the y-variable. Thus, the association between x and y looks different 

depending on the value of z.  

 

 

Some examples 

We want to examine the association between social support (x) and mental health (y). We 

think that the association may be moderated by gender (z). For example, we may expect social 

support to be more important for mental health among women than among men.  

We are interested in the association between mother’s educational attainment (x) and babies’ 

birth weight (y). It is reasonable that mother’s smoking (z) affects that association: there may 

be an association between x and y if the mother smokes, but no association between x and y if 

the mother does not smoke.  

 

 

x y 

z 
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Main effects and interaction effects 

In order to carry out an interaction analysis, we first we need to decide on the type of regression 

analysis that fits our outcome of choice – it could be any type (e.g. linear, logistic, ordinal, 

multinomial, or any other type). When we have decided that, we need a minimum of three 

independent variables. 

 

Independent variables 

x The variable we are mainly interested in with regard to its effect on y.  

Called “main effect term”. 

y The variable we suspect may modify the effect of x on y. 

Called “main effect term”. 

x*y The product of x and z – or the x-variable times the z-variable. 

Called “interaction effect term” or simple “interaction term”. 

Create the interaction with the Compute command (see Section 5.2).  

 

Based on the interaction analysis, we get information on whether or not there is a statistically 

significant interaction (i.e. if the z-variable modifies the effect of x on y or not). We also get 

information on in which direction the interaction effect goes, i.e. what it means.   

 

Measurement scales 

There are some important things to consider before carrying out the interaction analysis, such 

as the measurement scale of the independent variables (see Section 2.2). Generally, it is easier to 

interpret interaction terms based on the following combinations:  

 

Combinations of variables 

One binary x * one binary z  

One ordinal/ratio/interval x * one binary z  

One binary x * one ordinal/ratio/interval z  

One ordinal/ratio/interval x * one ordinal/ratio/interval z 
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In other words: avoid nominal variables with more than two categories! If you combine two 

ordinal/ratio/interval variables, make sure that x-variable and the z-variable goes in the same 

direction. This means that higher values in both variables should be either “better” or “worse” in 

relation to the outcome.   

 

Interpretation 

The most complicated part about interaction analysis is the interpretation. It is important that 

you keep track how your variables are coded, if you want to say something about what the 

interaction means.  

 

 

Example 

We want to examine the association between social support (x) and happiness (y). We think 

that the association may be moderated by gender (z). The following hypotheses are 

formulated: 1) Those with higher levels of social support are more likely to be happy, 2) 

Women are more likely to be happy, and 3) Social support is more strongly associated with 

happiness among women than among men.  

 

Since the outcome is binary (0=Not happy and 1=Happy), we choose logistic regression 

analysis. Social support ranges between 0 and 10, where higher values reflect higher levels of 

social support. Gender has the values 0=Man and 1=Women. 

 

To begin with, we examine the association between x and y: the odds ratio for social support is 

1.20, which confirmed our first hypothesis. Next, we examine the association between z and y: 

the odds ratio for gender is 1.17, which confirms the second hypothesis. Finally, we include x 

and z as well as the interaction term (i.e. x*z) in a new logistic regression. The interaction term 

has an odds ratio of 1.45, which means that the combination of having higher levels of social 

support and being a woman is associated with increasing chances of being happy.  
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If the interpretation of the interaction analysis is difficult, you may improve your understanding 

by doing a separate regression analysis for each category of the z-variable (this is of course only 

possible if you have a rather large dataset and not too many categories in your z-variable). This 

is called “stratified” analyses. We can go back to the example to illustrate this: 

  

 

Example 

We want to examine the association between social support (x) and happiness (y). We think 

that the association may be moderated by gender (z). The following hypotheses are 

formulated: 1) Those with higher levels of social support are more likely to be happy, 2) 

Women are more likely to be happy, and 3) Social support is more strongly associated with 

happiness among women than among men.  

 

Since the outcome is binary (0=Not happy and 1=Happy), we choose logistic regression 

analysis. Social support ranges between 0 and 10, where higher values reflect higher levels of 

social support. Gender has the values 0=Man and 1=Women. 

 

To begin with, we examine the association between x and y among men only: the odds ratio for 

social support is 1.04. Next, we examine the association between x and y among women only: 

the odds ratio for social support is 1.76. Thus, we now see that we have a stronger effect of 

social support on happiness among women than among men (just like the interaction analysis 

said.  

 

 

Remember, however: stratified analyses are perhaps easier to understand, but if you want to say 

that differences between strata (i.e. categories of the z-variable) are statistically significant, you 

should do a proper interaction analysis.  
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Interaction analysis for linear regression: Example 

 

 

(Data: SPSS_data1.sav) 

 

Part 1 

 

COMPUTE active_gender=active*gender. 

EXECUTE. 

 

Part 2 

 

REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS CI(95) R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN  

  /DEPENDENT hourstv 

  /METHOD=ENTER active gender active_gender. 

 

 

hourstv   Hours spent watching TV last week (Min=0; Max=36) 

active   Active lifestyle (0=No; 1=Yes) 

gender   Gender (0=Man; 1=Woman) 

active_gender  Interaction term: active*gender 
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Output 

Look at the table called Coefficients. The column called B shows the B coefficients. We focus on 

the B coefficient for the interaction term, active_gender. Here, it is 0.211. This means that the 

combination of being active (since this category has the higher value) and being a woman (since 

this category has the higher value) is associated with more TV watching. The column called Sig. 

shows the p-value. For the interaction term, active_gender, the p-value is 0.471 which means 

that the interaction is not statistically significant (at least not at the 5 % level). Then we look at 

the part of the table called 95 % Confidence Interval for B. This gives us the lower confidence 

limit (Lower Bound) and the upper confidence limit (Upper Bound). For the interaction term, 

active_gender, the lower limit is -0.364 whereas the upper limit is -0.787. The interval includes 

the null value (which is always x=0 in linear regression) and, thus, the results are not statistically 

significant.  

 

To sum up, there is no statistically significant interaction between having an active lifestyle and 

gender with regard to TV watching. Put differently, gender does not moderate the association 

between active lifestyle and hours watching TV.  
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Interaction analysis for logistic regression: Example 

 

 

(Data: SPSS_data1.sav) 

 

Part 1 

 

COMPUTE age_gender=age*gender. 

EXECUTE. 

 

Part 2 

 

LOGISTIC REGRESSION VARIABLES active 

  /METHOD=ENTER age gender age_gender  

  /PRINT=CI(95) 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5). 

 

 

active   Active lifestyle (0=No; 1=Yes) 

age   Age in years (Min=18; Max=79) 

gender   Gender (0=Man; 1=Woman) 

age_gender  Interaction term: age*gender 
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Output 

Look at the table called Coefficients. The column called Exp(B) shows the odds ratios (OR). We 

focus on the OR for the interaction term, age_gender. Here, it is 1.016. This means that the 

combination of being older (since increased values reflect older age) and being a woman (since 

this category has the higher value) increased the likelihood of being active. The column called 

Sig. shows the p-value. For the interaction term, age_gender, the p-value is 0.000 which means 

that the interaction is statistically significant (at the 0.1 % level). Then we look at the part of the 

table called 95 % C.I. for EXP(B). This gives us the lower confidence limit (Lower) and the upper 

confidence limit (Upper). For the interaction term, age_gender, the lower limit is 1.009 whereas 

the upper limit is 1.023. The interval does not includes the null value (which is always x=1 in 

logistic regression) and, thus, the results are statistically significant.  

 

To sum up, there is a statistically significant interaction between having age and gender with 

regard to having an active lifestyle. Put differently, gender does moderate the association 

between age and active lifestyle: age has a larger positive effect on active lifestyle among women 

than among men.   
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