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INTRODUCTION

The purpose of this guide is to provide both basic understanding of statistical concepts (know-
why) as well as practical tools to analyse quantitative data in SPSS (know-how). We wanted to
keep the guide completely free of formulas (i.e. brain-freezing mathematical equations). In doing
so, we have tried to explain everything at the most elementary level and only include aspects
that are important in actual research. As such, this guide is pragmatic and research-oriented.

Hopefully, you will find it useful.

This guide consists of two parts. The first part (Chapters 1-5) concerns various aspects
concerning data management and descriptive statistics. Next, we discuss issues related to
statistical significance (Chapter 6). The following part deals with some basic types of statistical
analysis, such as t-tests, ANOVA, chi-square, correlation analysis, and factor analysis (Chapters
7-10). Then we discuss theoretical and practical dimensions of regression analysis (Chapters 11-
12) before continuing into how to actually conduct regression analysis, including interaction

analysis (Chapters 13-17).

There are two data materials used in the guide. The first is “SPSS_Datal” which is mostly based
on a hypothetical data set available through SPSS. The second is “SPSS_Data2”, which is primarily

based on several waves of data collection related to the Word Values Survey.



General advice
Keep all your files for the course/project in the same main folder and use sub folders to

organise the files further.

Save your files under appropriate names.

Example: “Ericsson_Data_Lesson1_130603”

Keep a copy of the original file, just in case.

Example: “Ericsson _Data_Lesson1_Original”

Do not forget to continuously save your file while you work with it.

Always double-check that you have spelled values and labels correctly.

If you delete or change something by mistake, it is often possible to undo the last change by

“«_n

holding down the Ctrl-key while pressing “z” on your key board.

Use syntax!

Why syntax?

The syntax is basically a text file where you can add comments and SPSS commands. The reasons

for why everyone should use the syntax function are:

e It is a way of documenting and archiving everything you have done with the data
material.

e [tis easy to repeat parts or all of the analysis.

e Other people involved in the data material can easily understand what you have done
and how you have done it.

e [t saves an enormous amount of time.



1. THE SPSS ENVIRONMENT

The SPSS environment may come across as rather confusing at first, but it is actually quite
logical once you get a hang of it. In this part of the guide, we will discuss the following aspects of

the SPSS environment:

1.1 General functions

1.2 Variable view

1.3 Creating a new data set

1.4 Data view

1.5 Syntax

1.6 Output




1.1 General functions

The Menu bar (“File”, “Edit” and so on) is located in the upper area.
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In the lower left corner, two tabs are available: Data View and Variable View. When you start

SPSS, Variable View is default.
File types

SPSS uses three types of files with different functions and extensions:

Type Extension Content

Dataset .sav Data and variables
Syntax  .sps Commands and comments
Output  .spv Results




Options

The SPSS menu works similar to the menus in many other programs, such as Word or Excel.

Some useful options are listed below:

Option Description

Open a file Go to File\Open and choose Data, Syntax or Output. Browse your

hard drive to locate the file. Then click on Open.

Save afile Go to File\Save As. Type in a descriptive name and then click Save.
You can also choose to save only some of the variables into the new
data set by clicking Variables (before saving) and then ticking the

boxes next to the variables you want to keep.

Overwrite a file Go to File\Save.

Import a data set Go to File\Open\Data and choose the desired format next to Files of

type. Browse the file and click on Open.
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1.2 Variable view

In Variable View, different columns are displayed. Each line corresponds to a variable. A variable
is simply a quantity of something, which varies and can be measured, such as height, weight,

number of children, educational level, gender and so forth.

Column Function

Name Name of the variable. It is your own choice, but make it understandable and
do not use numbers or symbols as the first letter since SPSS will not accept
it. Moreover, you cannot use spaces in the name.

For example: “edu_level”

Type Indicates the variable type. The most common is Numeric (only accepts
numerical data, for example age or number of children) and String (also
accepts letters, e.g. for qualitative questions). Typically, all responses in a
questionnaire are transformed into numbers.
For example: “Man”=0 and “Woman”=1, or “Non-smoker”=1, “Ex-smoker”=2

and “Current smoker”=3.

Width Corresponds to the number of characters that is allowed to be typed in the
data cell. Default for numerical and string variables is 8, which only needs to

be altered if you want to type in long strings of numbers or whole sentences.

Decimals Default is 2 for numerical variables and will automatically be displayed as

.00 in the data view, if not otherwise specified.

Label The description of the variable. Use the question that the variable is based
upon or something else accurately describing the variable.

For example: “What is your highest level of education?”

Values Here you can add labels to each response alternative.
For example: For the variable gender, “Men” are coded as 0 and “Women”
are coded as 1. Through the option Values you tell SPSS to label each
number according to the correct response. Next to Value (below Value
Labels), type in “0” and next to Label, type in “Men”. Then click Add. Next to
Value (below Value Labels), type in “1” and next to Label, type in “Women”.
Then click Add.

“«n

Missing By default, missing values will be coded as “.” (dot) for numerical variables

in the data set. For missing values in String variables, cells will be left blank.
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There are some additional columns in Variable View, but just ignore them for now. Normally,

they do not need to be altered.

Options

To alter the variable options, you may click the cells. Some columns can be typed directly into,
while you need to press the arrows or dots that appeared when you click in the columns. It is
often possible to use “copy and paste” here - this may efficient when you, for example, have

several variables with the same Values.

Type

Mumeric l... g
= E

ith Decimals
.

2

If you want to delete a variable, select the numbered cell to the left of the variable and then

right-click and choose Clear.

“Unti : atatcs Data Ed (=B i
#2) “Untitled1 [DataSet0] - 1BM SPSS Statistics Data Editor ‘q =]
File Edit View Data Transform Analyze Graphs Utilities Add-ons Window Help
= i BoE i 0® *
FSHE M -~ Bl H Pl md 9
| Name " Type " Width " Decimals " Label ‘l Values " Missing H Columns H Align " Measure " Role
! 3 2 Mone None 8 = Right Unknown v Input =

Copy

Clear

3
2
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4
5 Insert Variable
6
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8

[4]

4] [r

Data View | variable View

MEIM SPS8 Statistics Processoris ready | | | | \
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1.3 Creating a new data set

If you have a questionnaire, you can easily create the corresponding data structure in Variable

View in SPSS. For example:

‘Name  Type  Width Decimals Label =~ Values  Missing

gender Numeric 1 0 Gender 0=Man None
1=Woman

srh Numeric 1 0 Self-rated health 1=Poor None
2=Fair
3=Good

4=Excellent

income Numeric 10 0 Disposable income None None




1.4 Data view

Once the structure of the data set is determined, it is time to take a look at Data View. Access this

view by clicking on the tab named Data View in the lower left corner.
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Here, each column corresponds to a variable, whereas each row corresponds to a case (most
commonly an individual). It is possible to change the order of the variables by highlighting a
column and “drag and drop”. You may also change the width of the column by placing the mouse
over the right border of a column (next to the name of the column), pressing down the button

and then “drag and drop”.

If you are creating a new data set, simply type in your data, one row (and one column) at a time.

Use the left and right arrow key on your key board to move between cells.

Make sure that you have chosen the right Type of variable before you enter your data (i.e.

Numeric or String).



1.5 Syntax

The syntax is presented in a new window called [BM SPSS Statistics Syntax Editor. Note that the
Menu bar is very similar to the one available through Data View and Variable View. In order

words, you do not always have to go back to Data View or Variable View to access the Menu bar.

FE
{2 IBM SPSS Statistics Syntax Editor [

File Edit View Data Transform Analyze Graphs Ulilittes Add-ons Run Tools Window Help

VAV OO B M = o]
1k

IBM SPSS Statistics Processorisready | | |[Ln1Col1 | [NUM |
L

There are two text areas: the big one to the right is where all commands will be displayed. What
is a command? It is basically when you tell SPSS that you want it to perform a specific test or
analysis or to create a table or a graph. All these features have their own commands. To the left,

you will have a “short list” of the same commands.

How to include a command in the syntax

There are two ways of including a command in the syntax. The first alternative is to go through
the menu system. For all features provided in the Menu bar, you will have a button called Paste.
If you click on this button, the correct command will be pasted into the syntax you currently
have open. If you have several syntax windows open, make sure that the command is pasted into

the correct one.

15



nds importan... ||

. -
ndz imnntan L |

ay frequency tables

[ OK ][ Paste ][ Reset ][Cam

The second alternative is to write the command yourself. If you have never used SPSS syntax
before, this is not recommended in the beginning. However, once you have created a “stock” of
commands using Paste, you may start re-using these commands by copy, paste and then alter
them directly in your syntax. When you write your own commands in the syntax, the functions

will have different colours. The command will be red if it is not written properly.

Once you have a long list of commands in your syntax, it may be difficult to keep track of them. It
is therefore highly recommended that you comment your syntax. You may add a heading above
each command, and also make notes of interesting findings etc. In order to insert a comment,
write an asterisk (*) before the comment begins. End the comment with a dot/period (.). If the
comment is not framed with an asterisk and a dot, it may be tangled up in the commands. You
can easily double-check that the comments are correctly entered, because if they turn grey if

they are.

Examples
* This is a frequency table of gender.
* Linear regression analysis of educational level (independent variable) and income

(dependent variable).

16



How to execute the command

To execute the command, highlight all the rows for that specific command and press the big
green arrow below the Menu bar in the syntax window. You do not have to highlight one
command at a time - it is possible to execute several commands at once. If you have added
comments to your syntax, make sure that they are grey (i.e. inactive), otherwise SPSS will take

them for (faulty) commands.

:  Run  Tools  Wing
H>e

j. ------- Artive
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1.6 Output

Everything you order in SPSS (e.g. graphs, tables, or analyses) ends up in a window called
Output. In the area to the left, all the different steps are listed. It is possible to collapse specific
steps by clicking on the box with the minus sign (and expand it again by clicking on the same
box, now with a plus sign). In the area to the right, your actual output is shown. First, you see the
syntax for what you have ordered, and then you get the tables or graphs related to the specific

command.

& *Output2 [Document2] - 1BM SPSS Statistics Viewer (B |

File Edit View Data Transform Inset Format Analyze Graphs Utilities Add-ons Window Help

SHe NE e~ A 90 & R
«» += BB =2

(i
-
E

e E U%pt‘ FREQUENCIES VARIABLES=gender
- 0g -
& & Frequencies /ORDER=ANALYSIS.
i itle
+[z4 Notes i
"Ll statstics Frequencies
L Gender
Statistics
Gender
N Valid 5000
Wissing 0
Gender
Cumulative
Frequency | Percent [ Valid Percent Percent
Valid ~ Male 2449 480 480 480
Female 2551 51,0 51,0 1000
Total 5000 100,0 1000

1BM SPSS Statistics Processor is ready
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2. BASIC STATISTICAL CONCEPTS

The first part of this chapter is devoted to issues related to populations and samples. These are
things you need to be aware of in order to make correct judgements of your data material.
Before it is possible to describe the variables in the data set through the different commands in
SPSS, we need to know more about the specific variables. Here, we will address two major

aspects: measurement scales and distributions.

2.1 Study population and sampling

2.2 Measurement scales

2.3 Distributions

19



2.1 Study population and sampling

Before we start looking into our data, we need to establish what our population is, since the

population is what we want to say something about. A population is often referred to by “N”.

Population (N)

A population can be almost anything: We have populations which are geographically defined,
such as the world, a country or a city; we have age-defined populations such as teenagers,
infants and elderly; and also specific groups such as women, drug addicts, teachers, master

students, and so on.

20



Sampling

It is seldom the case that we examine the whole population which we have chosen. Instead, we
use sampling - that basically means that we take a smaller sample of the population: a study
sample. A study sample is often denoted by “n”. The reasons behind sampling are primarily that
it is very costly and time consuming to collect data for the entire population. However,
sometimes you can include the whole population - like if you have small populations, such as one
school or one hospital or one company (this is often referred to as a case study). Another
example is when you use national registers (then you usually do not have to considered aspects

such as time or cost since the data is already available).

Sampling

Population (N)

Study sample (n)

There are many different sampling techniques available. Generally, they can be categorised into

two types that include several sub types:

Types of sampling

Non-probability sampling

Snowball Finding respondents through already selected respondents

Quota Adding suitable individuals until a certain quota is achieved
Convenience Easy access of respondents

Probability sampling

Random Every individual has the same chance of being selected

Systematic Sampling with intervals, e.g. every fifth of a list

Stratified Random sampling from different groups

Clustered Random sampling of groups, choosing all individuals from these groups

21



Non-probability sampling is most common in small-scale studies, marketing research, interview
studies and studies like that. Snowball sampling means that you start out with some
respondents and ask them to find other suitable respondents (like friends or other people they
know). Quota sampling is often used in marketing research. For example, the researchers wants
to have 100 respondents who have tried a new coffee brand and stands outside the store until
they have found 100 persons who have bought that specific brand. Then we have convenience
sampling. This is when you pick respondents who are easy to get access to, like friends, family,

or members of an organisation that you are a member of yourself, and so on.

The other type of sampling is probability sampling. First, we have the random probability
sampling, which postulates that every individual in the population should have the equal chance
of being selected. Another procedure is the systematic sampling, where you, for example, draw
every fifth or seventh from a list of people. Stratified sampling is when you draw random
samples from some specific groups. For example if you want to compare labour market
outcomes between Swedes and immigrants, you may not get a large enough sample of
immigrants if making a random sampling. Therefore you can draw a larger random sample from
the smaller group. Finally, we have clustered sampling. Perhaps you start out by drawing a

random sample of schools and then select all students attending ninth grade in these schools.

Probability sampling constitutes the foundation of quantitative data analysis. Why is it so
important? Well, we want our study sample to be “representative”. This means that it should
have the same characteristics as our population. This is a requirement to be able to draw

conclusions about the population based on the study sample (also known as generalizability).

Sampling

Population (N)

Study sample (n)

Representativeness

22



Missing data: attrition and non-response

An issue that almost all quantitative researchers deal with has to do with “missing data”. What is
missing data? Well, when we have defined our population and conducted a probability sampling,
we start collecting data for the individuals in our study sample - either through questionnaires
or registers (or both). It is very seldom the case, however, that we get complete information for
all individuals. We thus get missing data. When we use register data, missing data is commonly
called “attrition”, and when we use survey data (i.e. questionnaire data), missing data is usually
called “non-response”. If we have problems with missing data, we may not be able to draw
conclusions about the population based on the study sample. This is discussed in further detail

in Section 12.5.

Sampling

Missing data

Population (N)

Representativeness

23



2.2 Measurement scales

Types of scale

We use a scale to make the measurements of a variable, and the characteristics of the scale
determine the characteristics of the data we collect and, in turn, how we describe our data.
Generally speaking, there are four measurement scales: nominal, ordinal, ratio and interval.
Nominal and ordinal variables are often called “categorical” or “qualitative”, whereas ratio and

interval variables are often referred to as “continuous” or “quantitative”.

Name Type

Nominal
Categorical /qualitative
Ordinal
Ratio
Continuous/quantitative
Interval

It should also be noted that a nominal variable with only two categories/values is called
“dichotomous” (or “binary, or “dummy”) whereas a nominal variable with more than two
categories is called “polytomous”.

Differences between the scales

These scales differ in three important ways: hierarchy, distance and zero point.

Checklist

Is it possible to arrange/order the values hierarchically? Yes/No
Is it the same distance between the values? Yes/No
Does the scale have an absolute zero point? Yes/No

What does “arrange/order the values hierarchically” mean? If we take gender as an example, it is
not reasonable to say that “Man” is less or more than “Woman”. As another example, we can take
ethnicity: it is not reasonable to see “Danish” as less or more than “Finnish”. For variables such
as self-rated health, on the other hand, it is possible to say that “Excellent health” is better than
“Good health”. Moreover, it is possible to say that the grade “A” is better than the grade “B”.
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What does “distance” mean? If we take income as an example, we know that 1000 dollars are
twice as much as 500 dollars, and 2000 dollars are twice as much as 1000 dollars. The same
logic applies to variables such as age: it is the same distance between 2 years and 4 years as
between 6 years and 8 years. Thus, having the same distance between the values means that the
differences between two values are the same regardless of which part of the scale you are

looking at.

What does “absolute zero point” mean? Basically, it means that the scale cannot have negative
values. It is possible for the temperature to be minus 10 degrees Celsius, but is not possible to
have less than zero years of schooling or having less than zero days of unemployment.

Examples

Below, we can see some examples of variables on the different measurement scales.

Scale Values : Examples
Nominal Order values: No ' Yes/no questions
Same distance: No Gender

Absolute zero point: Not applicable  Ethnicity

Ordinal Order values: Yes Attitude questions
Same distance: No Self-rated health

Absolute zero point: Not applicable  Educational level

Ratio Order values: Yes Age

Same distance: Yes Income

Absolute zero point: Yes School marks
Interval Order values: Yes Temperature (Celsius)

Same distance: Yes

Absolute zero point: No

A nominal variable is hence a variable for which the values cannot be ranked, and we do not
have the same distance between the values, e.g. gender or questions that can be answered with
yes or no. Ordinal variables are similar, but here the values can be ranked, such as for self-rated
health: “Excellent is better than “Good”; “Good” is better than “Fair”; and “Fair” is better than
“Poor”. However, for ordinal scales we do not have the same distance between the values: the
“amount” of better health is not necessarily the same between “Poor” and “Fair” as between

“Good” and “Excellent”. The ratio scale is similar to the ordinal scale, but here we do have the
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same distance between the values: for example, we know that 10 years of schooling is twice as
much as 5 years of schooling. The interval scale is similar to the ratio scale, but here we also

have an absolute zero point.
Types of values

It is possible to distinguish between two types of values: discrete and continuous. Discrete
values can only assume “whole” values, such as “Man”, “Women”, “Green”, “Car”, and “House”.
Continuous values can assume any value along a scale, such as “3.5 years”, “58.3 seconds”, and
“163.5 centimetres”. Note, however, that continuous variables (i.e. on a ratio or interval scale) do
not necessarily have continuous values. For example, number of cars is a ratio variable but it has
discrete values: while the average number of cars in a population may be 0.8, it is not correct
(although many do) to say that any given individual in a population has 0.8 cars (since a car is a

“whole” value”).

Name Type

Discrete “Whole” values

Continuous Any value
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2.3 Distributions

For continuous variables (i.e. on a ratio or interval scale) it is important to know what the

distribution of values in the variable looks like.

Normal distributions

One common type of distribution is the “normal distribution”. Many statistical methods are

based on normal distributions.

The above figure is an example of a typical normal distribution. Here are some basic facts about

the normal distribution:

Basic facts about normal distributions

Always bell-shaped.

The peak always indicates the mean value.

Always symmetrical, i.e. the tails on each side of the mean are equally large. This means that
50 % of the values are on one side of the mean, and 50 % of the values are on the other side of

the mean.

The area under the curve is always 1 (100 % of the values).

Below is an example of a (normal) distribution of height among Swedish men at the time of
military service enlistment (in Swedish: “lumpen”). In this example, the mean height is about
180 centimetres. The less common a certain height gets, the smaller the area under the curve.

Here, the tails are about equally large on both sides of the mean, suggesting that it is
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approximately as common for individuals in the sample to be shorter than the mean as it is for

them to be taller than the mean.
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Normal distributions can look quite different. The figures below are all examples of normal
distributions. The difference lies in the amount of spread of the values: because the shape of a

normal distribution is not only defined by the mean value, but by the standard deviation!

But what is “standard deviation”? A simple definition is that it expresses how much variation

exists from the mean for a given variable. If we have a low standard deviation, it suggests that
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the individuals in our data have values close to the mean, and if we have a high standard

deviation, it indicates that the values are more spread out over a large range of values.
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The empirical rule of normal distributions tells us the following (see the figure above):

e 68 % of the values fall within -1 and +1 standard deviations.
e 959 of all values fall within -2 and +2 standard deviations.

e Nearly 100 % of all values fall within -3 and +3 standard deviations.

Example
We have collected information about weight for a sample of individuals. If the mean weight in
this sample was 70 kilos and the standard deviation was 5 kilos, the empirical rule would give

us the following information:

68 % of the individuals have a weight of 65-75 kilos:
Lower limit: 70 kilos - (5 kilos*1); upper limit: 70 kilos + (5 kilos*1)

95 % of the individuals have a weight of 60-80 kilos:
Lower limit: 70 kilos - (5 kilos*2); upper limit: 70 kilos + (5 kilos*2)

Nearly 100 % of the have a weight of 55-85 kilos:
Lower limit: 70 kilos - (5 kilos*3); upper limit: 70 kilos + (5 kilos*3)

As long as we have information about the mean value and the standard deviation, it is possible to

do the same calculation for all the normal distributions. Remember that a more pronounced
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peak indicates a low standard deviation, whereas a flat distribution indicates a high standard

deviation.
Skewed distributions

There are other types of distribution. One very common type of distribution is the “skewed

distribution”. Here are some facts about skewed distributions:

Basic facts about skewed distributions

Always asymmetrical = tails are different, i.e. the empirical rule does not apply

Skew can be positive (right tail longer) or negative (left tail longer)

Examples of a positively skewed distribution (like the figure to the left) are: number of hospital
visits, number of days in unemployment, number of telephone calls during a day. Most
individuals will have the value zero or a low value, whereas a few will have increasingly high

values.

Examples of a negatively skewed distribution (like the figure to the right) are: age of retirement,
or a very easy test. Most individuals will have high values, and then a few will have very low

values.

Negatively skewed distribution Positively skewed distribution
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The skewness of the distribution can be indicated by two types of measure: skewness and

kurtosis.

Facts about the skewness measure

Measure of the symmetry of a distribution.

Negative skewness value = the distribution is skewed to the right (longer tail to the right)

Positive skewness value = the distribution is skewed to the left (longer tail to the left)

A perfect normal distribution has a skewness of 0

Skewness value between -2 and +2 is usually considered acceptable

Facts about the kurtosis measure

Measure of the shape (or the “peakedness”) of a distribution

A perfect normal distribution has a kurtosis of 0 (mesokurtic distribution)

Kurtosis value above 0 = Leptokurtic distribution (sharper peak and longer/fatter tails)

Kurtosis value below 0 = Platykurtic distribution (rounder peak and shorter/thinner tails)

Kurtosis value between -2 and +2 is usually considered acceptable




3. DESCRIPTIVE STATISTICS

When we know about the measurement scale and the distribution of the variables in our data
set, we can decide on how to best describe our variables. In this type of exploratory data
analysis, we use a set of tables and graphs as well as measures of central tendency and variation.

Here, we will address the following types of description:

3.1 Tables
3.2 Graphs

3.3 Measures of central tendency

3.4 Measures of variation

Two types of table will be covered: frequency table and cross table. With regard to graphs, we
will discuss bar chart, pie chart, histogram and scatterplot. For measures of central tendency, the
mean, mode, and median are addressed. Moreover, some examples of measures of variation will

be included here, namely minimum, maximum, range, and standard deviation.

Going back to what we learnt about measurement scales and the distributions, this is generally

how you should match the different types of variables with the different types of description:

Type of variable

Categorical (nominal/ordinal) Frequency table
Cross table
Bar chart
Pie chart

Mode

Continuous (ratio/interval) Histogram
Scatterplot
Mean (if normal distribution)
Median (if skewed distribution)
Min
Max
Range

Standard deviation
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3.1 Tables

Tables are useful if one wants to see the distribution of values for categorical (nominal or

ordinal) variables. Here, we will discuss frequency tables and cross tables.

A frequency table is a simple but very useful description of one variable and gives us both the

frequency and various types of percentages of individuals with the different values.

Column Content

Frequency The number of individuals in the different categories.

Percent The distribution of percent also taking into consideration any missing
information. This means that if some individuals would have missing
information about gender, the percentages in this column would be
dependent upon that.

Valid Percent Same as Percent but does not take missing into account. This column is
what we primarily focus on.

Cumulative percent Adds the percentages from top to bottom.

Below, compare the first table with the second table to see the differences between Percent and

Valid Percent (in the second table, the information about gender has been removed for one of

the individuals).
Gender
Curmnulative
Freguency | Percent | Valid Percent Percent
Valid  Man 7 46,7 46,7 46,7
Waman ] 533 533 100,0
Tatal 15 1000 1000
Gender
Cumulative
Frequency | Percent | Valid Percent Percent
Walid Man 7 46,7 50,0 50,0
Woman 7 467 50,0 1000
Tatal 14 933 1000
Missing  System 1 6,7
Tatal 15 1000
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A cross table is a description of how individuals are distributed according to two variables. The
table in the example below, is a cross table with the variables gender and health. Here, it is

possible to see the distribution of health by gender, and vice versa.

Gender
Man Woman Total
Health Good 2 3 5
Poor 5 5 10
Taotal 7 8 15

The first table below also includes “column percentages”, demonstrating the distribution of
health according to gender. The second instead adds “row percentages”, demonstrating the
distribution of gender according to health status. Note that the frequencies (i.e. the number of
individuals) in the cells are the same, but the percentages are different since the focus shifts
between the tables. If you find this difficult to separate in your mind, one good advice is perhaps

to see where the percentages add up to 100 % in Total - in the rows or in the columns.

Gender
Man Woman Total

Health Good Count 2 3 5
% within Gender 28,6% 37,5% 33,3%

Poor  Count 5 5 10

% within Gender 71,4% 62,5% 66,7%

Total Count 7 g 15
% within Gender 100,0% 100,0% 100,0%

Gender
Man Woman Total

Health  Good Count 2 3 g
% within Health 40,0% G0,0% 100,0%

FPoor Count 5 i 10

% within Health 50,0% 50,0% 100,0%

Total Count 7 8 15
% within Health 46,7% 53,3% 100,0%

Important to note is that if we would have individuals with missing information with regard to
gender or health, these would be excluded from the cross table. Therefore, it is important to
always look at the two variables used in a cross table separately (through e.g. frequency tables)

as well.
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3.2 Graphs

For categorical variables, bar charts or pie charts may be useful. For continuous variables, we

can use histograms (one variable) or scatterplots (two variables).

A bar chart is like an illustration of a frequency table. On the x-axis (horizontal axis) you see the
different values (or categories) of the variable and on the y-axis (vertical axis) you can choose to

see either the percentage of individuals in each category (like in the graph below) or the number

of individuals in each category.
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A pie chart can also be seen as a simple illustration of a frequency table. The slices represent the
different values (or categories) of the variable and they can be specified in terms of the

percentage of individuals in each category (like in the graph below) or the number of individuals

in each category.
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A histogram is similar to a bar chart but, unlike the bar chart, it is suitable for continuous
variables. Here, a reference line representing the normal distribution curve can be added. The

histogram will give us an idea about whether the distribution (of the continuous variable) is

normal or skewed.
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When we had two categorical variables, we could produce a cross table to see how these two
variables were related. If we have two continuous variables, we may use something called a

scatterplot instead. Each dot in the scatterplot represents one individual in our data. We may
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also include a reference line here, to see if we have a pattern in our data: for example, if high or
low values in one variable correspond to high or low values in the other variable. In the
scatterplot below, we can see that increasing school class size seems to be related to increasing

scores on a cognitive test, at least to some degree.
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3.3 Measures of central tendency

Central tendency can be defined as measures of the location of the middle in a distribution. The

most common types of central tendency are:

Measure Definition

Mean The average value
Median The value in the absolute middle
Mode The most frequently occurring value

The mean is perhaps the most commonly used type of central tendency and we get it by dividing

the sum of all values by the number of values.

Example

We have four fishes that weight:

XD XIS 22X o> X O

1.1 kilos 0.8 kilos 1.1 kilos 1.0 kilos

What is the mean?
First we add the values together: 1.1+0.8+1.1+1.0=4.0
Then we divide the sum of the values by the number of values: 4.0/4=1.

The mean is thus 1 kilo.
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The median - i.e. the value in the absolute middle of the distribution - is obtained by sorting all

the values from low to high and then identifying the value in the middle of the list.

Example

We have nine individuals who are of the following heights:

158 cm 159cm 164 cm 165cm 173 cm 174 cm 175cm 179 cm 181 cm

The median is thus 173 cm.

Note that when we have an odd number of values, it is easy to identify the value in the absolute
middle of the distribution. When we have an even number of values, we get the median by

adding the two values in the middle together and dividing the sum by 2.

The mode - or “type” - is defined as the most frequently occurring value in a distribution. Here as
well, one starts by sorting responses from the lowest to the highest value and then identifies the

most common value.

Example

We have information about the number of cars in the household:

o0 oo
i s e B -

| | | |
O O O O O O O O O O O O
1 car 1 car 1 car 1 car 1 car 2 cars 2 cars 3 cars

o
o

The mode is thus 1 car (since this is the most common value).

The choice of type of central tendency is based on a) the measurement scale of the variable and
b) the distribution of the variable. Generally, if the variable is categorical (nominal or ordinal),

the mode is preferred. If the variable is continuous (ratio or interval), the mean or the median is
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preferred. In the latter case, the mean is chosen if the variable is normally distributed and the

median is chosen if the variable has a skewed distribution.

Scale Type Central tendency
Nominal
Categorical  Mode
Ordinal
Ratio
Continuous  Normal distribution: Mean; Skewed distribution: Median
Interval

Why should one not use the median or the mean for categorical variables? For nominal
variables, it is easy to give an answer. Let us take country of birth as an example. In this example,
the variable is coded into four categories: 1) Sweden, 2) China, 3) Canada, and 4) Norway. This is
clearly a nominal variable. Since the order of the categories is random (i.e. the order of the
categories does not really matter), the location of the absolute middle in the distribution would
not tell us anything information about the variable: the “content” of the middle would change
completely if we changed the order of the categories. Let us take gender (which is also on a
nominal scale) as another example: it would not make any sense to give the mean or median of
gender. For some ordinal variables, however, the median is sometimes used. For example, if we
have five categories of occupational class, which can be ranked from lower class to upper class, it
may be interesting to give the value of the median (for example, in this case, the median could be

lower non-manuals which would tell us something about the distribution of values).
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Why it is important to consider the distribution of the variable for continuous variables before
we decide on the type of central tendency? If we take a look at the figures below, we can draw
the following conclusions: if we have a perfectly normally distributed variable, the mean, median
and mode would all be the same. However, if the distribution is skewed, the median would be a

better description of the location of the middle in the distribution.

Normal distribution Negatively skewed Positively skewed

[ N
Mean Mo Mode Vv ™ Mean
:eglan Median Median
ode
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3.4 Measures of variation

Besides the mean, the median and the mode, we may use some measures of variation to describe

our variables further. Here are some of the most common measures of variation:

Measure Definition

Min The lowest value

Max The highest value

Range The difference between the lowest and highest value
Standard deviation The dispersion of values from the mean

These measures are most suitable for continuous variables (i.e. ratio or interval) but sometimes
min, max, and range are used for ordinal variables as well. However, they cannot be used for
nominal variables (for the same reason as why we do not use mean or median to describe

nominal variables).
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4. PRODUCING DESCRIPTIVE STATISTICS IN SPSS

This part of the guide will describe how to use SPSS to produce the various tables and graphs as

well as measures of central tendency and variation previously discussed.

4.1 Descriptives

4.2 Frequency table
4.3 Cross table

4.4 Bar chart
4.5 Pie chart

4.6 Histogram

4.7 Scatterplot
4.8 Edit graphs
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4.1 Descriptives

Number of variables Atleast one
Scale of variable(s) Continuous (ratio/interval) or ordinal

The Descriptives function is used primarily for continuous variables (i.e. ratio/interval) but

could also be used for some ordinal variables that are approximately continuous (e.g. rating

measures). The SPSS function allows you to order the following statistics:

Mean Mean value

Sum Sum of all values

Stddev Standard deviation

Min Minimum (smallest) observed value

Max Maximum (largest) observed value

Variance Variance

Range The difference between the minimum value and the maximum value
Semean Standard error of the mean

Kurtosis Kurtosis and standard error of kurtosis

Skewness Skewness and standard error of skewness
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Descriptives: Function

Go to the Menu bar, choose Analyze\Descriptive Statistics\Descriptives.
This will open up a new window called Descriptives.

A small window will open, where you see two boxes.

oW N

In the left box, all your variables are displayed. Here you choose the variable(s)
you want to get the measures of central tendency and/or variation for.

In other words, if you want to, you can choose several variables here, and SPSS
will produce descriptives for all of them.

5. Click on the small arrow between the boxes to transfer the variable(s) to the box
to the right.

Click on Options.

Tick the boxes for the measures you want to have.

Click on Continue to close the small window.

© © N oo

Click on OK to close the Descriptives window in order to get the results in your

Output window.
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Descriptives: Syntax

DESCRIPTIVES VARIABLES=VARNAME
/STATISTICS=MEASURES.

VARNAME Insert the name of the variable you want to use.
MEASURES Insert the measures you want to produce.

For example:

MEAN SUM MIN MAX RANGE STDDEV

46



Descriptives: Example

(Data: SPSS_datal.sav)

DESCRIPTIVES VARIABLES=age
/STATISTICS=MEAN MIN MAX RANGE STDDEV.

age Age in years (Min=18; Max=79)
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Output
In the table called Descriptive Statistics, all statistics you ordered will be displayed - one type of

statistic per column.

Descriptive Statistics
[+l Range Minimum | Maximum Mean Std. Deviation
Ageinvyears 5000 61 14 74 46,94 17,703

Walid M (listwise) 5000
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4.2 Frequency table

Number of variables At least one (one table will be produced for each variable)

Scale of variable(s) Categorical (nominal/ordinal)

This function is used primarily for categorical variables (i.e. nominal/ordinal) but can be used
for any type of variable; the main concern is that the table becomes too lengthy if there are many
categories/values in the variable. The Frequencies function does not only allow us to create a

frequency table, it is also possible to produce a variety of statistics.

Types of statistic

Frequency The absolute number of observations within each category
Percent The percentage of observations within each category (incl. missing)
Valid Percent The percentage of observations within each category (excl. missing)
Cumulative Percent = Accumulated percentage across categories

Mean The average value

Median The value in the absolute middle

Mode The most frequently occurring value

Sum Sum of all values

Std. deviation Standard deviation

Variance Variance

Range The difference between the minimum value and the maximum value
Minimum Minimum (smallest) observed value

Maximum Maximum (largest) observed value

S.E. mean Standard error of the mean

Skewness Skewness and standard error of skewness

Kurtosis Kurtosis and standard error of kurtosis

Quartiles Cut-off values for four groups

Cut points Cut-off values for a selected number of groups

Percentiles Selected cut-off values for percentiles
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Besides the frequency table itself and the types of statistic listed above, the Frequencies function

makes it possible to order some specific graphs. The default is that no graph is produced, but you

may change this to include a bar chart, a pie chart, or a histogram. If you choose a histogram, you

may also add a normal curve. If you do order a graph, it is recommended that you go with the

option of showing percentages rather than frequencies.

Bar chart

See Section 4.4 for detailed information

Pie chart

See Section 4.5 for detailed information

Histogram

See Section 4.6 for detailed information
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Frequency table: Function

1. Go to the Menu bar, choose Analyze\Descriptive Statistics\Frequencies.

2. This will open up a new window called Frequencies.

3. A small window will open, where you see two boxes. In the left box, all your
variables are displayed.

4. In the left box, you choose the variable(s) you want to get a frequency table for.

In other words, you may choose several variables here, and SPSS will produce
frequency tables for all of them.

5. Click on the small arrow between the boxes to transfer the variable(s) to the box
to the right.

6. To order statistics for your variable, click on Statistics. In the new window called
Frequencies: Statistics tick the boxes for the measures you want SPSS to show.
Click on Continue.

7. To order a graph, click on Charts. In the new window called Frequencies: Charts
tick the box for the graph you want SPSS to show. Also make sure to tick the box
Percentages. Click on Continue.

8. Click on OK.
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Frequency table: Syntax

FREQUENCIES VARIABLES=VARNAME
/STATISTICS=MEASURES
/CHARTNAME SPECIFICATION
/ORDER=ANALYSIS.

VARNAME Insert the name of the variable you want to use.

MEASURES If you want to produce statistics, insert the types of statistic here.
For example:
MEAN
or

MEAN MEDIAN STDDEV

CHARTNAME If you want to produce a graph, insert the name of the graph here.
For example:
BARCHART
PIECHART
HISTOGRAM

SPECIFICATION For bar charts and pie charts, specify if you want to display
frequencies or percentages on the y-axis (i.e. vertical axis).
For example:
FREQ
PERCENT
For histograms, specify if you want to add a normal curve:

NORMAL
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Frequency table: Example

(Data: SPSS_datal.sav)

FREQUENCIES VARIABLES=hometype
/STATISTICS=MODE MEDIAN
/ORDER=ANALYSIS.

hometype Building type (1=Single family; 2=Multiple family; 3=Townhouse;
4=Mobile home)

53



Output/Step 1
The table called Statistics gives a summary of the variable. SPSS automatically shows the number
of valid values as well as the number of missing values. If you ordered any additional statistics,

they will be displayed in this table as well.

Statistics
Building type
M Valid 5000
Missing ]
Median 2,00
Macle 1

Output/Step 2

The next table is the actual frequency table. Missing System provides information about the
number of individuals with missing information. Frequency gives the number of individuals in
each category of the variable. Percent shows the percentage of individuals in each category of
the variable, including missing. Valid Percent gives the percentage of individuals in each category
of the variable, excluding missing (this is the type of percentage we most often report).
Cumulative Percent adds up the percentages from the first category to the second, from the

second to the third, and so on.

Building type
Cumulative
Frequency Percent | Walid Percent Percent

Valid  Single family 2246 4449 4449 444

Multiple family 1554 31 31 76,0

Townhouse 4908 18,2 18,2 94 2

Makile home 282 58 58 100,0

Total 5000 100,0 100,0
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4.3 Cross table

Number of variables Two (it is possible to split/panel the table by a third variable)

Scale of variable(s) Categorical (nominal/ordinal)

This function is used primarily for categorical variables (i.e. nominal/ordinal) but can be used
for any type of variable; the main concern is that the table becomes too complex and difficult to
interpret if there are many categories/values in the variables used. Moreover, it is possible to

add a chi-square to the cross table (for more information about chi-square, see Chapter 8).
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Cross table: Function

1. Go to the Menu bar, choose Analyze\Descriptive Statistics\Crosstabs.

2. A small window will open, where you see one big box and three small boxes. In
the left box, all your variables are displayed.

3. Here, you choose two variables: one to be the Row variable, and one to be the
Column variable. It is your choice which variable is row and which is column, but
it is recommended that you make that choice depending on how you want to
interpret your crosstable. If you are unsure, try both ways to see which the better
choice is.

4. Move your variables to the Row and Column boxes by using the arrows.

If you stop here and press OK, you will only have a crosstable that displays
frequencies. In most cases, you also want to see percentages.

6. To do this, click on Cells. Tick the boxes for Row and/or Column.

7. Click on Continue.

8. Click on OK to close the Crosstabs window in order to get the results in your

Output window.
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Cross table: Syntax

CROSSTABS
/TABLES=VARNAME1 BY VARNAME?2
/FORMAT=AVALUE TABLES
/CELLS=COUNT PERCENTAGES

/COUNT ROUND CELL.
VARNAME1 Insert the name of the first variable you want to use.
This variable will be chosen for rows.
VARNAME? Insert the name of the second variable you want to use.
This variable will be chosen for columns.
PERCENTAGES Specify which type/types of percentages you want to see.

For example:

ROW COLUMN TOTAL
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Cross table: Example

(Data: SPSS_datal.sav)

CROSSTABS
/TABLES=union BY gender
/FORMAT=AVALUE TABLES
/CELLS=COUNT ROW COLUMN

/COUNT ROUND CELL.
gender Gender (0=Man; 1=Woman)
union Union member (0=No; 1=Yes)
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Output

This is a cross table of the variables union and gender.

allows us to count the number of

times that a particular combination of the two variables occurs. The

shows the distribution of gender among those who are not a union member as well as the

distribution of gender among those who are a union member (each row adds up to 100 %). The

shows the distribution of union among men as well as the distribution of union

among women (each column adds up to 100 %).

Union member * Gender Crosstabulation

Gender
Male Female Total

Lnion member Mo Count 20845 2168 4253
% within Union member 49 0% a1,0% 100,0%

% within Gender 85,1% 85 0% B51%

fes Count 364 383 a7

% within Union member 43 7% 51,3% 100,0%

% within Gender 14,5% 15,0% 14,5%

Total Count 24449 2551 5000
% within Union member 49 0% a1,0% 100,0%

% within Gender 100,0% 100,0% 100,0%
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4.4 Bar chart

Number of variables Simple bar chart: one (it is possible to split/panel the chart by a
second variable)
Clustered bar chart: two (it is possible to split/panel the chart by
a third variable)

Scale of variable(s) Categorical (nominal/ordinal)

The bar chart is useful primarily for categorical variables (i.e. nominal/ordinal) but can be used
for any type of variable as long as there are not too many values for each variable. There are two
useful types of bar chart: the simple bar chart and the clustered bar chart. The simple bar chart
allows for an illustration of one variable, but it is possible to split it by a second variable. The
clustered bar chart uses two variables and shows how the values of these two variables cluster

together (here as well, it is possible to split the chart by another variable).
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Bar chart: Function

Simple bar chart

Go to the Menu bar, choose Graphs\Legacy Dialogs\Bar.
A small window will open, where you click on Define.
A new window called Define Simple Bar: Summaries for Groups of Cases will open.

Tick the option % of cases.

i W e

In the left box, all your variables are displayed. Here, you select the variable you
want SPSS to show a bar chart for. Click on the arrow next to Category Axis.
6. Click on OK to close the Define Simple Bar: Summaries for Groups of Cases

window in order to get the results in your Output window.
Clustered bar chart
Go to the Menu bar, choose Graphs\Legacy Dialogs\Bar.

A small window will open, where you choose the option Clustered.

Click on Define.

oW ho=

A new window called Define Clustered Bar: Summaries for Groups of Cases will

open.

Ul

Tick the option % of cases.

6. In the left box, all your variables are displayed. Here, you select the variable you
want SPSS to show a bar chart for. Click on the arrow next to Category Axis.

7. In the left box, you select the variable you want the previous variable to be
clustered by. Click on the arrow next to Define Clusters by.

8. Click on OK to close the Define Simple Bar: Summaries for Groups of Cases

window in order to get the results in your Output window.
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Bar chart: Syntax

Simple bar chart

GRAPH
/BAR(SIMPLE)=PCT BY VARNAME.

Clustered bar chart

GRAPH
/BAR(GROUPED)=COUNT BY VARNAME1 BY VARNAME?Z.

VARNAME Insert the name of the variable you want to use.
VARNAME1 Insert the name of the variable you want to use as the main variable.
VARNAME?2 Insert the name of the variable you want to use as your

grouping/clustering variable
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Bar chart: Example (simple bar chart)

(Data: SPSS_datal.sav)

GRAPH
/BAR(SIMPLE)=PCT BY jobsat.

jobsat Job satisfaction (1=Highly dissatisfied; 2=Somehwat dissatisfied;
3=Neutral; 4=Somewhat satisfied; 5=Highly satisfied)
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Output

This is a bar chart of the variable jobsat. The x-axis (horizontal axis) represents the values of the

variable. The y-axis (vertical axis) represents the proportion of individuals.

25 0%

20,0%

15,0%

Percent

10,0%—

5,0%

Highly dissatisfied Somewhat Meutral Somewhat satisfied Highly satisfied
dissatisfied

Job satisfaction

Note: To include the exact percentage for each bar, double-click on the graph in the Output
window. This opens a new window called Chart Editor. Click on Elements in this window’s Menu
bar and then click on Show Data Labels. A new window called Properties is opened; click on

Close. Finally, close the Chart Editor to save the changes to the Output window.
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Bar chart: Example (clustered bar chart)

(Data: SPSS_datal.sav)

GRAPH
/BAR(GROUPED)=PCT BY jobsat BY gender.

jobsat Job satisfaction (1=Highly dissatisfied; 2=Somehwat dissatisfied;
3=Neutral; 4=Somewhat satisfied; 5=Highly satisfied)
gender Gender (0=Man; 1=Woman)
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Output
This is a bar chart of the variable jobsat, grouped by the variable gender. The x-axis (horizontal
axis) represents the values of the first variable (jobsat). The bars have different colours

depending on the value of the grouping variable (gender). The y-axis (vertical axis) represents

the proportion of individuals.

Gender

Emale
DFemale

25,0%

20,0%

15,0%

Percent

10,0%

5,0%

0%~

Highl Somewhat Mewutral Somewhat Highly satisfied
dissatisfied  dissatisfied satisfied

Job satisfaction

Note: To include the exact percentage for each bar, double-click on the graph in the Output
window. This opens a new window called Chart Editor. Click on Elements in this window’s Menu
bar and then click on Show Data Labels. A new window called Properties is opened; click on

Close. Finally, close the Chart Editor to save the changes to the Output window.

66



4.5 Pie chart

Number of variables One (it is possible to split/panel the chart by a second variable)

Scale of variable(s) Categorical (nominal/ordinal)

This function is used only for categorical variables (i.e. nominal/ordinal) with relatively few

categories — otherwise the pie chart will get too complex.
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Pie chart: Function

Go to the Menu bar, choose Graphs\Legacy Dialogs\Pie.
A small window will open, where you click on Define.
A new window called Define Pie: Summaries for Groups of Cases will open.

Tick the option % of cases.

ik N

In the left box, all your variables are displayed. Here, you select the variable you
want SPSS to show a pie chart for. Click on the arrow next to Define slices by.
6. Click on OK to close the Define Pie: Summaries for Groups of Cases window in

order to get the results in your Output window.
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Pie chart: Syntax

GRAPH
/PIE=PCT BY VARNAME.

VARNAME Insert the name of the variable you want to use.
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Pie chart: Example

(Data: SPSS_datal.sav)

GRAPH
/PIE=PCT BY hometype.

hometype Building type (1=Single family; 2=Multiple family; 3=Townhouse;
4=Mobile home)

70



Output
This is a pie chart of the variable hometype. It is a circular diagram, divided into slices, where

each slice represents the proportion of a specific value of the variable.

Building
type
M single family
E nuttiple family
OTownhouse
I Mahile home

Note: To include the exact percentage for each slice, double-click on the graph in the Output
window. This opens a new window called Chart Editor. Click on Elements in this window’s Menu
bar and then click on Show Data Labels. A new window called Properties is opened; click on

Close. Finally, close the Chart Editor to save the changes to the Output window.
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4.6 Histogram

Number of variables One (it is possible to split/panel the chart by a second variable)

Scale of variable(s) Continuous (ratio/interval)

This function is used to illustrate the distribution of continuous variables (i.e. ratio/interval). It
is possible to include a normal curve in the chart in order to see how the data adheres to a

normal distribution.
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Histogram: Function

1. Go to the Menu bar, choose Graphs\Legacy Dialogs\Histogram.

2. A new window called Histogram will open.

3. In the left box, all your variables are displayed. Here, you select the variable you
want SPSS to show a histogram for. Click on the arrow next to Variable.

4. Tick the option Display normal curve to include a normal curve fitted to the data.

5. Click on OK to close the Histogram window in order to get the results in your

Output window.
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Histogram: Syntax

GRAPH
/HISTOGRAM(NORMAL)=VARNAME.

VARNAME Insert the name of the variable you want to use.

74



Histogram: Example

(Data: SPSS_datal.sav)

GRAPH
/HISTOGRAM(NORMAL)=cd.

ed Years of education (Min=6; Max=23)
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Output

This is a histogram of the variable ed. The x-axis (horizontal axis) represents the values of the
variable. The y-axis (vertical axis) represents the number of individuals. The black line displays

the normal curve. SPSS automatically gives you the mean, standard deviation and the total

number of cases for the variable.

Mean = 14 54
Stel. Dev. = 3,205
M=25000

600

Frequency

400 XY
200 7‘ ]

o T T T T T
5 10 15 20 25

Years of education
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4.7 Scatterplot

Number of variables Two (it is possible to split/panel the chart by a third variable)

Scale of variable(s) Continuous (ratio/interval)

This function is used to illustrate how two continuous variables co-vary - or “correlate” - in
their pattern of values (see Chapter 9 for more detailed information about correlation). If
increasing values of one variable correspond to increasing values of another variable, it is called
a positive correlation. If increasing values of one variable correspond to decreasing values of
another variable, we have a negative correlation. In the graph below, different types of

correlation are presented. The letter “x” stands for x-axis (horizontal axis) and the letter “y

stands for y-axis (vertical axis).

o ) Negative correlation
Positive correlation R No correlation
A A
o o o
o ° °© o o
o o o o
o o o
° ) y o o © y ) o
y o o ° o ) [~} ° °
o o
o o
o ° ° o0 ° ° o
o o o o o
o # °
# X =
X X
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Scatterplot: Function

oW N

Go to the Menu bar, choose Graphs\Legacy Dialogs\Scatter/Dot.

A small window will open, where you click on Define.

A new window called Simple Scatterplot will open.

In the left box, all your variables are displayed. Move the variables you want to
use to the Y Axis and X Axis by highlighting them and clicking on the arrow next to
the axis you want them on.

Click on OK to close the Simple Scatterplot window in order to get the results in

your Output window.
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Scatterplot: Syntax

GRAPH
/SCATTERPLOT(BIVAR)=XVAR WITH YVAR
/MISSING=LISTWISE.

XVAR Insert the name of the first variable you want to use.

This variable will be chosen for the x-axis.

YVAR Insert the name of the second variable you want to use.

This variable will be chosen for the y-axis.

79



Scatterplot: Example

(Data: SPSS_datal.sav)

GRAPH
/SCATTERPLOT(BIVAR)=age WITH pets
/MISSING=LISTWISE.

age Age in years (Min=18; Max=79)
pets Number of pets owned (Min=0; Max=21)
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Output

This is a scatterplot of the variables age and pets. The x-axis (horizontal axis) represents the

values of the variable age. The y-axis (vertical axis) represents the values of the variable pets.

Each dot represents one individual. As can be seen from this scatterplot, these two variables do

not co-vary. If they would have co-varied, we would typically have seen an oval shape (tilted to

the left or to the right), where low values for age would correspond to either low or high values

for pets (and vice versa).

Number of pets owned
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R? Linear = 6 597E-4

Age in years

Note: To include a reference line, double-click on the graph in the Output window. This opens a

new window called Chart Editor. Click on Elements in this window’s Menu bar and then click on

Fit Line at Total. A new window called Properties is opened; click on Close. Finally, close the

Chart Editor to save the changes to the Output window.
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4.8 Edit graphs

As already touched upon, it is possible to modify various elements of the graphs you produce in
SPSS. In the Output window, just double-click on a graph of choice. This will open the Chart
Editor. For example, the Chart Editor allows you to change the size and colours of the graph, as

well as to add data labels (e.g. percentages) and reference lines. Try it out!
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5. OTHER USEFUL FEATURES IN SPSS

This part of the guide will describe other features in SPSS that you may need to use when you

work with your data material.

5.1 Recode

5.2 Compute

5.3 Select cases

5.4 If

5.5 Weight cases
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5.1 Recode

The recoding command is useful in a lot of different situations. For example: if you have a
variable that is continuous and you want to create categories, if you have a categorical variable
where you want to combine categories, if you want to change a binary variable (i.e. a variable
with only two values, such as gender) to have the opposite coding, or if you want to change any

value(s) into missing.
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Recode: Function

Imagine that we have a continuous variable with information about age that we want to

change into age groups.

1. Go to the Menu bar, choose Transform\Recode into different variables.

2. Anew window called Recode into Different Variables will open.

3. In the left box, all your variables are displayed. You choose the variable that you
want to recode and the use the arrow to move it to the right box.

4. Below Output variable, you specify the Name of the new variable.
If the old variable was called age, the new could be named agecat.

5. Also specify the Label, for example: “Age category”.

6. Click on Change.

7. Click on Old and New Values, whereby a new window called Recode into Different
Variables: Old and New Values will open.

8. Here, the basic principle is very easy: you let SPSS know what the old values are,
and then what you want the new values to be.

9. In the example of age (that ranges from 18 to 79), we choose the following age
groups: 18-24; 25-34; 35-49; 50-64; >65 (65 or older).
Below Range you write “18” through “24” and next to Value (below New Value)
you write “1”. Then click on Add.
Below Range you write “25” through “34” and next to Value (below New Value)
you write “2”. Then click on Add.
Below Range you write “35” through “49” and next to Value (below New Value)
you write “3”. Then click on Add.
Below Range you write “50” through “64” and next to Value (below New Value)
you write “4”. Then click on Add.
Below Range you write “65” through “79” and next to Value (below New Value)
you write “5”. Then click on Add.

10. Click on Continue and then OK.

11. Now you will have a new categorical variable based on your continuous variable.
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Recode: Syntax

RECODE VARNAME (OLD AND NEW VALUES) INTO VARNAME_NEW.
EXECUTE.

VARNAME Insert the name of the old variable.

VARNAME_NEW Insert the name you want for the new variable.

(OLD AND NEW VALUES) Specify how you want to transform the values.

Some examples:
(1 thru 3=1) (4 thru 6=2) (7=3)

or

(LOWEST thru 10=0) (11 thru HIGHEST=1)

or
(0=1) (1=2) (2=3) (3=4) (ELSE=SYSMIS)
or

(99=SYSMIS) (ELSE=COPY)
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Recode: Example

(Data: SPSS_datal.sav)

RECODE age (18 thru 24=1) (25 thru 34=2) (35 thru 49=3) (50 thru 64=4) (65 thru 79=5)
INTO agecat.
EXECUTE.

age Age in years (Min=18; Max=79)
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5.2 Compute
Compute is another very useful command that works just like an ordinary calculator. For

example, you can use it when you want to add, subtract, multiply or divide the values of one or

more variables.
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Compute: Function

Imagine that we have one variable indicating how many saltwater fish people own
(pets_saltfish) and one variable that indicates how many freshwater fish people own
(pets_freshfish). We want to create a variable indicating how many fish people own in total

(pets_fish), i.e. the sum of these two fish variables.

1. Go to the Menu bar, choose Transform\Compute Variable.

2. A new window called Compute Variable will open.

3. In the left box (below Target Variable), you chose the name of the new variable, for
example pets_fish.

4. In the right box (below Numeric Expression), you write your formula. In this case, you
would write “pets_saltfish+pets_freshfish”.

5. Click on OK.
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Compute: Syntax

COMPUTE VARNAME_NEW=EXPRESSION.

EXECUTE.
VARNAME_NEW Insert the name you want for the new variable.
EXPRESSION State how the new variable should be created.

Some examples:
(income_yearl+income_year2+income_year3)/3
or

2005-age

or

height_cm*0,01
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Compute: Example

(Data: SPSS_datal.sav)

COMPUTE pets_fish=pets_saltfish+pets_freshfish.

EXECUTE.
pets_saltfish Number of saltwater fish owned (Min=0; Max=8)
pets_freshfish Number of freshwater fish owned (Min=0) (Max=16)
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5.3 Select cases

Sometimes you may want to select only a specific part of the data set. For example, you may
want to get descriptive statistics for men and women separately, or for a certain age range, or for

only non-smokers. In that case, we may use a command called Select Cases.
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Select cases: Function

As an example, we may take the variable gender. Let us pretend we want to limit our

descriptive statistics only to women.

A T

10.
11.
12.
13.

Go to the Menu bar, choose Data\Select Cases.

A new window called Select Cases will open.

Tick the box called If condition is satisfied.

Click on the button called If.

A new window called Select Cases: [f will open.

In the left box, all your variables are displayed. You choose the variable that you want to
select cases for and the use the arrow to move it to the right box.

In this specific example, we choose the variable gender (for which we want to select
only women). In the right box, we thus write “gender=1" (since women has the value 1
here).

Click on Continue and then OK. Now, only women are selected (and men are temporarily
filtered out from the data set).

If you want to “re-select” all cases, you carry out the following steps:

Go to the Menu bar, choose Data\Select Cases.

A new window called Select Cases will open.

Tick the box called All cases.

Click on OK.

When you select cases, a new “filter” variable will be created in your data set. If you delete it,

the selection will disappear. You can double-check that the selection works by opening up the

Data view and see that the case numbers for cases you “un-selected” are crossed over.

The selection will be applied to everything you do from the point you select cases and

onwards, until you remove the selection. In other words, all tables and graphs will be based

only on the selected individuals until you remove (or change) the selection.
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Select cases: Syntax

Apply selection

USE ALL.

COMPUTE FILTERNAME=(VARNAME=SPECIFICATION).
FILTER BY FILTERNAME.

EXECUTE.

Remove selection

FILTER OFF.
USE ALL.
EXECUTE.
VARNAME Insert the name of the variable you want to filter on.
SPECIFICATION Specify which value/values of this variable you want to keep.
Some examples:
(good_health=1)
or
(age>17)
or
(gender=1 & smoking=0)
FILTERNAME Specify what you want to call the new variable that indicates which

values to keep.
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Select cases: Example

(Data: SPSS_datal.sav)
Apply selection

USE ALL.

COMPUTE onlywomen=(gender=1).
FILTER BY onlywomen.

EXECUTE.

Remove selection
FILTER OFF.

USE ALL.
EXECUTE.

gender Gender (0=Man; 1=Woman)
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5.41If

The If command is very similar to the Recode command. Just like Recode, If can be used to create
new variables - but unlike Recode, you can also use If to condition your data. Put differently, it
means you can construct a new variable (or change an existing one) given certain properties of

one or more other variables.

Example

Suppose we ask ten individuals a couple of questions about their smoking behaviour. The first
question is: “Do you smoke?” (smoke) and the possible responses are: 0=No or 1=Yes. The
second question is: “How many packs of cigarettes do you usually smoke per week?”
(number_packs) and the response options are: 1=Less than one pack; 2=1 pack; 3=2 packs;

4=3-4 packs; 5=5-7 packs; 6=8 or more packs. This is what our data looks like:

smoke number_packs

1 0 1
2 1 5
3 0 .
4 1 7
5 0 .
6 0 .
7 0 1
8 1 2
9 0 .
10 0

The problem we have is that some of the individuals, who answered that they did not smoke in
the first question, also gave an answer to the second question (individuals 1 and 7). We want
to change their value in number_packs to missing (missing is illustrated by a “dot”). That is

when we use the [f command. By just writing the following in our syntax, we fix this problem:

IF (smoke=0) number_packs=$SYSMIS.

EXECUTE.

smoke number_packs
1 0 .
2 1 5
3 0 .
4 1 7
5 0 .
6 0 .
7 0 .
8 1 2
9 0 .
10 0
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If: Syntax

IF (CONDITION) OUTCOME.
EXECUTE.

(CONDITION) Specify how you want to condition your data.
Some examples:
(education=3)
or
(gender=0 & smoke=1)
or
(age>17 & age<66)
or

SYSMIS(gender)

OUTCOME Specify how you want result to turn out.
Some examples:
health=$§SYSMIS
or
working age=1
or

(gender=1 & smoking=0)
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If: Example

(Data: SPSS_datal.sav)

We have two variables. The first variable (marital) contains information about marital status
and the second variable (spoused) contains information about how many years of schooling
the spouse has. Not all individuals have information for the variable spoused - it is primarily
missing if the individual does not have a spouse (i.e. unmarried), but in some cases the
individual is married but did not provide any information about the spouse’s education. So, we
want to separate these two types of missing by recoding the missing information in spoused to

the value -1 upon the condition that marital has the value 0 (i.e. unmarried).

IF (marital=0) spoused=-1.

EXECUTE.
marital Marital status (O=Unmarried; 1=Married)
spoused Spouse’s years of education (Min=0; Max=24)
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5.5 Weight cases

Optimally, our study sample should be a miniature of the population we are interested in (see
Section 2.1). This is seldom the case, due to missing data. Missing data may cause some groups in
the study sample to be smaller (i.e. underrepresented) or bigger (i.e. overrepresented) than they
actually are. If such problems occur, we cannot draw reliable conclusions from our data.
However, we can try to correct for the lack of representativeness by using “weights”. This is a
rather common strategy in surveys. If you use an existing survey material, there are usually
already designed weight variables in the data set. The guide will not discuss exactly how weights

are calculated, just why and how they are used in SPSS.

Example

Suppose we have a sample of 1,000 adults who have answered a questionnaire about their
health. Now we want to collect health data from all children age 10-18 living in these adult
persons’ household. This gives us a sample of 2,500 children. However, children who live in
the same household are likely to experience similar living conditions - they do not adequately
represent the population of children age 10-18 - and we want to adjust for that. Thus, we use a

weight variable that takes into account this particular sampling of children.

To get “un-weighted” cases, remember to de-activate the Weight cases function in SPSS.
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Weight cases: Syntax
Activate the weight

WEIGHT BY VARNAME.
De-activate the weight

WEIGHT OFF.

VARNAME Insert the name of the weight variable.
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Weight cases: Example

(Data: SPSS_data2.sav)

The four-digit weight variable in the data material we use corrects the sample to reflect
national distributions of key variables. We apply the weight before we run any analyses based

on the data.

WEIGHT BY weight_var.
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6. STATISTICAL SIGNIFICANCE

6.1 Hypothesis testing
6.2 P-values

6.3 Confidence intervals

6.4 Discussion
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6.1 Hypothesis testing

Quantitative research is commonly about examining relationships between variables (see
Chapter 11 for a more detailed discussion about those issues). Assuming that all is done
correctly, data analysis will give us information about the direction of the relationship (i.e. is the
relationship negative or positive) and the effect size (i.e. how strong the relationship is). These
are the two most important outcomes of data analysis, but it is not uncommon that research
inquiry instead focuses on a third point: statistical significance. Statistical significance can be
seen as an indicator of the reliability of the results - although that is important indeed, it is not
what exclusively should guide which findings we focus on and which we discard. A fourth issue
that needs to be taken into account is whether the findings have any practical or clinical
importance - in order words; do they matter? We therefore suggest the following priority list

when it comes to how results from data analysis should be interpreted and valued:

Priority list

1. Direction Is the relationship positive or negative?

2. Effect size Is the relationship strong or weak?

3. Statistical significance s the relationship reliable?

4. Practical importance Is the relationship relevant?

Hypotheses

Let us return to the matter of statistical significance: what is it really? Well, for example, if we
find that cats are smarter than dogs, we want to know whether this difference is “real”.
Hypothesis testing is how we may answer that question. We start by converting the question

into two hypotheses:

Hypotheses

Null hypothesis (Ho) There is no difference

Alternative hypothesis (H1) There is a difference

There is no “law” saying that the null hypothesis is always “no difference” and the alternative
hypothesis is always “difference”. However, for the null hypothesis, precedence is commonly

given to the “simpler” (or more “conservative” or “normative”) hypothesis. Here, it is generally
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simpler to claim that there is no difference in intelligence between cats and dogs than to say that

there is a difference.
Outcomes

There are two possible outcomes of hypothesis testing:

Outcomes of hypothesis testing

Reject Ho in favour of H1  Suggests that the alternative hypothesis may be true (but it does

not prove it)

Do not reject Ho Suggests that there is not sufficient evidence against Ho in
favour of H; (but it does not prove that the null hypothesis is

true)

Note that we are never able to decide from hypothesis testing that we should reject or accept Hj.

However, rejecting Ho may lead us to suggest that H1 might be accepted.
Errors

There are two types of error that may occur in hypothesis testing: a type I error occurs when the
null hypothesis is rejected although it is true, whereas a type II error occurs when the null
hypothesis is not rejected although it is false. In the example of cats and dogs, a type I error
would thus occur if we concluded that there is a difference in the intelligence between cats and
dogs although that is not true. A type II error, on the other hand, would occur if we concluded

that there is no difference in intelligence when in fact there is.

Type I and type Il errors

Conclusion
Reject Hy in favour of Hy Do not reject Ho
Ho Type 1 error Right decision
“Truth”
H1 Right decision Type Il error

Type I errors are generally considered to be more serious that type II errors. Type Il errors are

often due to small sample sizes.
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Statistical hypothesis testing

Conducting a statistical hypothesis test is easy to do in statistical software such as SPSS. These
tests give us a probability value (p-value) that can help us decide whether or not the null

hypothesis should be rejected. See Section 6.2 for a further discussion about the p-value.
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6.2 P-values

The probability value - or p-value - helps us decide whether or not the null hypothesis should

be rejected. There are some common misunderstandings about p-values:

The p-value is not...

... the probability that the null hypothesis is true

... the probability that the alternative hypothesis is false

... the probability of the occurrence of a type I error (falsely rejecting Ho)

... the probability that replicating the experiment would yield the same conclusion

... the probability that the finding is a “fluke”

...an indicator of the size of the effect or importance of the findings

... determining the significance level

Using the p-value to make this decision, it must first be decided what probability value we find
acceptable. This is often referred to “the significance level”. If the p-value is below this level, it
means that we can reject the null hypothesis in favour of the alternative hypothesis, and if the p-
value is above this level, it means that we cannot reject the null hypothesis. The smaller the p-

value, the more convincing is the rejection of the null hypothesis.

Significance levels

The significance level is set by the individual researcher - it that sense, it is quite arbitrary - but

there are some levels that are widely used (asterisks are often used to illustrate these levels):

Significance levels

p<0.05 Statistically significant at the 5 % level *
p<0.01 Statistically significant at the 1 % level ok
p<0.001 Statistically significant at the 0.1 % level kX

It should be noted that p<0.10 - statistical significance at the 10 % level - is also a commonly

used significance level in some fields of research.

Let us return to the example of differences in intelligence between cats and dogs. For instance, if

we find a difference in intelligence between these types of animal, and the p-value is below 0.05,
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we may thus state that the null hypothesis (i.e. no difference) is rejected at the 5 % significance
level. The p-value does not, however, state whether the difference is small or big, or whether
cats or dogs represent the smarter type of animal (in order to state such things, one would have

to look at the direction and the effect size).

It should be noted that the p-value is affected by the sample size, which means that a smaller
sample size often translates to a larger p-value, For example, if you have a data material of 100
individuals, the effect size has to be quite large (e.g. large income differences income between
men and women) in order to get small p-values. Conversely, larger sample size makes it easier to
find small p-values. For example, if you analyse a data material containing the entire population
of a country, even tiny differences are likely to have small p-values. In other words, the size of

the sample influences the chances of rejecting the null hypothesis.
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Practical importance

As stated earlier in this section, statistical significance - determined by the p-value - is not the
same as effect size or practical/clinical importance (i.e. if it “matters”). We can use couple of

examples to illustrate the differences:

Example 1

A pharmaceutical company has developed a drug to cure obesity. During tests of this drug, it
appears as migraine could be one of the side effects of taking this drug. The null hypothesis
would here be that there are no differences in the risk of migraine between people who had
taken the drug and those who have not. The alternative hypothesis would then be that there
are differences. When we run the analysis on this data material, we see that those who have
taken the drug have ten times the risk of migraine, but the p-value is above the 5 % level (i.e.
p>0.05). Thus, we cannot reject the null hypothesis. The difference is however large and is
likely to have significant impact on people’s lives. It could moreover be the case that a type II

error has occurred here due to a small sample size.

Example 2

In the second example, researchers have gathered data on coffee consumption and happiness
among 100,000 company employees. The null hypothesis would here be that there are no
differences in happiness between people who drink coffee and those who do not. The
alternative hypothesis would be that there are differences. The analysis suggests that there is a
tiny difference in happiness between those who drink coffee and those who do not, to the
advantage of the coffee drinkers. The p-value is below 0.05 which suggests that the null
hypothesis can be rejected at the 5 % level. However, the difference is very small and the

results may not be very useful.
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6.3 Confidence intervals

Confidence intervals (CI) are closely related to the concept of statistical hypothesis testing, but
they are more informative than p-values since they do not only suggest whether we should

reject Ho or not, they also provide the range of plausible values.

The “unknown population parameter”

Before we get into the discussion about confidence intervals, we need to address the concept of
“unknown population parameter”. A parameter tells us something about a population (while a
“statistic” tells us something about a sample). The population parameter is thus basically a
measure of any given population. Examples of population parameters are: the mean height of
Swedish men, the average intelligence score in 12-year olds, or the mean number of children
among highly educated people. The parameter is a fixed value; it does not vary. We seldom have
information about the entire population, generally only for a part of it (i.e. a sample). In that
case, the population parameter is unknown. Simply put, a confidence interval is a range that

includes the “unknown population parameter”.

Limits and levels

The interval has an upper and a lower bound (i.e. confidence limits). Similar to p-values,
confidence intervals have “confidence levels” that indicate how certain we can be that the
interval includes the true population parameter. Confidence intervals are typically stated at the
5 % level. A 95 % confidence level would thus mean that if we replicated a certain analysis in
100 samples of the population, we would expect that 95 % of the intervals would include the
true population parameter. Thus, strictly speaking, it is not correct to say that “with 95 %
probability, the true population parameter lies within this interval” (because the parameter

either is or is not within the interval).

Confidence and precision

When discussing confidence intervals, it is important to be aware of the tension between
precision and certainty: better precision means being less confident, whereas more confidence

means less precision. As previously stated, confidence is reflected by the confidence level we

choose; logically, a higher confidence level means more confidence. The higher the confidence
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level we choose, the wider the interval gets - and the wider the interval is, the less the precision

we get.

Confidence versus precision

Higher confidence level = wider confidence interval = less precision

Lower confidence level = slimmer confidence interval = more precision

However, it is important to know that the width of the confidence interval is also affected by the

sample size: the larger the sample size, the slimmer the interval (which means better precision).

Let us take an example to sum up what has been said about confidence intervals so far: We have
gathered data on all sociology students at Stockholm University and find that their mean age is
26 years. Instead of highlighting this relatively non-informative fact, we can calculate the
confidence interval (at the 5 % level). In this case, it is 22-30. Therefore we could make the more
informative statement that: “with 95 % confidence, we conclude that the mean age of sociology

students is 22 to 30 years”.

The most common application for confidence intervals as a way of significance testing is when
we are interested in the difference between two samples. For example: the difference in the
mean income between men and women, or the difference in the percentage of daily smokers
among individuals with a lower level of education versus those with a higher level of education.
In this case, we may look at the “overlap” between the confidence intervals estimated for each
sample. Suppose that we have an upcoming election and just got the results from the latest poll.
There are two parties in the race: the green party and the yellow party. The results from the poll
show that the green party got 42 % of the votes and the confidence interval is 40-44 (at the 5 %
level). The yellow party got 58 % of the votes and the confidence interval is 54-62 (at the 5 %
level). What does this tell us? First of all, we can conclude that the yellow party has a greater
share of votes. Looking at the two confidence intervals, we see that the intervals do not overlap.
Why is that important? Well, remember that all values in a confidence interval are plausible.
Hence, if the confidence intervals do not overlap, it means that the estimates (in this case: the
share of votes) are indeed different given the chosen confidence level (in this case: at the 5 %
level). However, it should be emphasized that while non-overlap always mirrors a significant

difference, overlap is not always the same as a non-significance difference.
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6.4 Discussion

Now you are maybe wondering; should I use p-values or confidence intervals? Almost all
disciplines would recommend using both because they capture several dimensions. In the
following, the advantages and disadvantages of p-values and confidence intervals will be

described and discussed.

P-value is an important part of research, most likely the heart of it. The p-value is based on “yes-
or no”-questions in which it shows how much evidence we have against the null hypothesis. P-
values are much clearer than confidence intervals and it helps the researcher to make quick
judgments about his research. Another advantage with the p-value is that it can give the
difference from a previous specified statistical level. Unfortunately there are misconceptions
about the p-value among researchers and many disciplines rely on them to draw conclusions
rather than understanding the background. One of the common mistakes among researchers is
that they do not further analyze their data in order to ensure that the p-value is not affected by
other factors. Moreover, p-values cannot alone permit any direct statements about the direction
or size of difference. In order to make those decisions, one must always look at the confidence

intervals.

A confidence interval informs the researcher about the power of the study and whether the data
is compatible, it also shows the likelihood of the null hypothesis being true and that in turn tells
us how much confidence we have in our findings. The width of the confidence interval indicates
the precision of the point estimates, in which a small interval indicates a more precise estimate,
while a wide interval indicates a less precise estimate. The precision is related to the sample size
and power in which it tells us that the larger sample size we have, the greater, the more precise
estimates we have. The intervals are useful when having small sample sizes. Normally, small
studies fail to find statistically significant treatments, when including point estimates with wide
intervals that include the null value may be consistent and significant. The intervals provide the
researcher an understanding of the sample size. This can also be a disadvantage when having
large data because it produces statistically significant results even if the difference between the
groups is small. Another advantage with the confidence interval is that it can provide means of
analysis for studies that seek to describe and explain, rather than make decisions about
treatments effects. A disadvantage with the confidence interval is that it captures several

elements at the time, in which it may not give precise information like the p-values.
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As mentioned, a majority of disciplines recommend including both p-values and confidence
intervals because they capture information in different dimensions. Neither p-values nor
confidence intervals can prevent biases or other problems but the combination of them provides
a more flexible approach and highlights new perspectives on the data. Confidence intervals
permit us to draw several conclusions at the same time and they are more informative about
sample sizes and point estimates. They are also useful in studies when we have small sample
sizes. But they are not as precise as p-values when it comes to accepting and rejecting the null

hypothesis. Thus, when we combine them together we can be more certain.

The figure below shows the advantages and disadvantages when interpreting and drawing

conclusions with the help of p-values and confidence intervals.

P-values versus confidence intervals

P-values Confidence intervals
Accept/reject ;ﬁ ;ﬁ
Degree of support ;ﬁ ;ﬁ
Estimate and uncertainty 5@ ;ﬁ
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7. COMPARE MEANS

7.1 T-test: independent samples

7.2 T-test: paired samples
7.3 One-way ANOVA
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7.1 T-test: independent samples

Number of variables One independent (x)
One dependent (y)

Scale of variable(s) Independent: categorical with two values (binary)
Dependent: continuous (ratio/interval)

The independent samples t-test is a method for comparing the mean of one variable between
two (unrelated) groups. For example, you may want to see if the income salary of teachers
differs between men and women, or if the score of a cognitive test differs between children who

have parents with low versus high education.

Mean income salary among men Mean income salary among women
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Assumptions

First, you have to check your data to see that the assumptions behind the independent samples

t-test hold. If your data “passes” these assumptions, you will have a valid result. However, “real

world” data is often a bit complicated, and it is not uncommon that at least one of the

assumptions is violated. While you most commonly will be able to conduct the t-test anyway, it

is important to be aware of the possible problems.

Checklist

Continuous

dependent variable

Your dependent variable should be continuous (i.e. interval/ratio).
For example: Income, height, weight, number of years of schooling,
and so on. Although they are not really continuous, it is still very
common to use ratings as continuous variables, such as: “How
satisfied with your income are you?” (on a scale 1-10) or “To what

extent do you agree with the previous statement?” (on a scale 1-5).

Two unrelated
categories in the

independent variable

Your independent variable should be categorical and consist of only
two groups. Unrelated means that the two groups should be
mutually excluded: no individual can be in both groups. For
example: men vs. women, employed vs. unemployed, low-income

earner vs. high-income earner, and so on.

No outliers

An outlier is an extreme (low or high) value. For example, if most
individuals have a test score between 40 and 60, but one individual
has a score of 96 or another individual has a score of 1, this will

distort the test.
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T-test: independent samples: Function

1. Go to the Menu bar, choose Analyze\Compare Means\Independent-Samples T
Test.

2. In the left box, all your variables are displayed. You choose the variable you want
to have as your dependent variable and transfer it to the box called Test
Variable(s).

3. Then you choose the variable you want as your independent variable and transfer

it to the box called Grouping Variable.

Click on Define Groups...

Specify which values the two categories in the independent variable have.

Click on Continue.

Click on OK.

N o ok
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T-test: independent samples: Syntax

T-TEST GROUPS=INDEPVAR(G1 G2)
/MISSING=ANALYSIS
JVARIABLES=DEPVAR
/CRITERIA=CI(.95).

INDEPVAR Name of the categorical independent variable
(G1 G2) Specify which values the two categories the independent variable
have.

For example:
(01)
or

(12)

DEPVAR Name of the continuous dependent variable
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T-test: independent samples: Example

(Data: SPSS_datal.sav)

T-TEST GROUPS=retire(0 1)
/MISSING=ANALYSIS
/VARIABLES=hourstv
/CRITERIA=CI(.95).

retire Retired (0=No; 1=Yes)
hourstv Hours spent watching TV last week (Min=0; Max=36)
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Output/Step 1

The table called Group Statistics sums the statistics for the variables in the t-test. Here, it can be

interesting to look at each groups’ mean value. As can be seen, those who are not retired have a

slightly higher mean value for hours spent watching TV: 19.89 compared to 18.21 for those who

are retired.

Group Statistics
Std. Error
Retired M Mean Std. Deviation Mean
Hours spentwatching TV Mo 4268 18 848 47445 073
lastweek Yes 732 18,21 7,018 259
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Output/Step 2
The difference between the not-retired group’s and retired group’s mean value is tested in the

next table (Independent Samples Test).

The first value of interest is the Levene’s Test for Equality of Variances. This test indicates which
row of the table you are supposed to focus on. Look at the column called Sig. If Levene’s test is
significant at the 5 % level (p<0.05) then you focus on the row for Equal variances not assumed.

If the test is not significant (p>0.05), you focus on the row for Equal variances assumed.

Once you have established which row you are supposed to look at, the second value of interest is
the column called Sig. (2-tailed). A significant p-value here means that the difference between
the groups is statistically significant. In this case, the p-value is 0.000 which means that the
difference we found in the table above - which showed that those who are not retired watch
more TV than those who are retired - is statistically significant (at the 0.1 % level). However, the

difference is rather small.

Independent Samples Test

Levene's Test for Equality of
Variances t-test for Equality of Means

95% Confidence Interval of the
Mean Std. Error Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper

Hours spentwatching TV Equal variances 108,569 000 8170 4998 000 1,680 ,206 1,277 2,083
lastweek assumed

Equal variances not 6,238 | 849,220 000 1,680 269 1,152 2,209
assumed
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7.2 T-test: paired samples

Number of variables Two (reflecting repeated measurement points)

Scale of variable(s) Continuous (ratio/interval)

A dependent or “paired” samples t-test is used to see the difference or change between two
measurement points. For example, you could apply this test to see if the staff’s job satisfaction
has improved after their boss has taken a course in “socio-emotional skills” compared to before,
or if the rate of cigarette smoking in certain schools has declined since the introduction of a new

intervention programme.

For the independent samples t-test, you were supposed to have two groups for which you
compared the mean. For the paired samples t-test, you instead have two measurements of the

same variable, and you look at whether there is a change from one measurement point to the

other.
Fe
‘e
\\ s\
Happiness score before summer vacation Happiness score after summer vacation
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Assumptions

First, you have to check your data to see that the assumptions behind the paired samples t-test
hold. If your data “passes” these assumptions, you will have a valid result. However, “real world”
data is often a bit complicated, and it is not uncommon that at least one of the assumptions is
violated. While you most common will be able to conduct the t-test anyway, it is important to be

aware of the possible problems.

Checklist

Continuous variables Your two variables should be continuous (i.e. interval/ratio). For
example: Income, height, weight, number of years of schooling, and
so on. Although they are not really continuous, it is still very
common to use ratings as continuous variables, such as: “How
satisfied with your income are you?” (on a scale 1-10) or “To what

extent do you agree with the previous statement?” (on a scale 1-5).

Two measurement Your two variables should reflect one single phenomenon, but this
points phenomenon is measured at two different time points for each
individual.

Normal distribution  Both variables need to be approximately normally distributed. Use a

histogram to check (see Section 4.6).

No outliers in the For example, if one individual has an extremely low value at the first
comparison between measurement point and an extremely high value at the second
the two measurement point (or vice versa), this will distort the test. Use a

measurement points  scatterplot to check (see Section 4.7).
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T-test: paired samples: Function

1. Go to the Menu bar, choose Analyze\Compare Means\Paired Samples T Test.

2. In the left box, all your variables are displayed. You choose the variable you want
to have as your dependent variable and transfer it to the box called Paired
variables.

3. Then you choose the variable you want as your independent variable and transfer
it to the box called Paired variable.

4. Click on OK.
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T-test: paired samples: Syntax

T-TEST PAIRS=MEASURE1 WITH MEASURE2 (PAIRED)
JCRITERIA=CI(.9500)
/MISSING=ANALYSIS.

MEASURE1 Insert the name of the variable containing information about the

first measurement point.

MEASURE?2 Insert the name of the variable containing information about the

second measurement point.
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T-test: paired samples: Example

(Data: SPSS_datal.sav)

T-TEST PAIRS=unempl_03 WITH unempl_05 (PAIRED)
/CRITERIA=CI(.9500)
/MISSING=ANALYSIS.

unempl_03 Unemployment days in 2003 (ranges from 0 to 365)
unempl_05 Unemployment days in 2005 (ranges from 0 to 365)
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Output/Step 1

The table called Paired Samples Statistics shows the statistics for the variables. For example, it

shows the mean value for each of the two measurement points. In the current example, we see

that the mean number of unemployment days is lower in 2003 (mean=8.12) than in 2005

(mean=11.31).

Paired Samples Statistics
Std. Error
Mean M Std. Deviation Mean
Pair1  Unemployment days in 812 4971 23,286 .330
2003
Unemployment days in 11,31 4971 44103 626
2005
Output/Step 2

The table called Paired Samples Test shows the results from the actual t-test. The first column -

Mean - shows that the mean difference between unemployment days in 2003 and

unemployment days in 2005 is -3.190 (this difference is actually just derived from taking 11.31

minus 8.12). The last column - Sig. (2-tailed) - shows the p-value for this difference. If the p-

value is smaller than 0.05, the test suggests that there is a statistically significant difference (at

the 5 % level). Thus, here we can conclude that there is a statistically significant increase in

unemployment days from 2003 to 2005.

Paired Samples Test

Faired Differences

95% Confidence Interval of the

Std. Error Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
Pair1  Unemployment days in -3,180 43,017 10 -4.386 -1,984 -5,228 4870 Laoo
2003 - Unemployment
days in 2005
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7.3 One-way ANOVA

ks

Number of variables One independent (x)
One dependent (y)

Scale of variable(s) Independent: categorical (nominal/ordinal)
Dependent: continuous (ratio/interval)

The one-way ANOVA is very similar to the independent samples t-test. The difference is that the
one-way ANOVA allows you to have more than two categories in your independent variable. For
example, you can compare how many cups of coffee people drink per day depending on if they
have a low-stress, medium-stress, or high-stress job. Or you can see if the number of days of
paternity leave differs between fathers in Sweden, Denmark, Norway and Finland. However, it is
important to remember that the one-way ANOVA does not tell you exactly which groups are
different from each other; it only tells you that at least two of the groups differ in terms of the

outcome.

PV VY FEEEEEE

Mean number of ice cones per Mean number of ice cones per Mean number of ice cones per

week during May in Swedish ~ week during June in Swedish ~ week during July in Swedish

children ages 5-10 children ages 5-10 children ages 5-10
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Assumptions

First, you have to check your data to see that the assumptions behind the one-way ANOVA hold.

If your data “passes” these assumptions, you will have a valid result. However, “real world” data

is often a bit complicated, and it is not uncommon that at least one of the assumptions is

violated. While you most common will be able to conduct the test anyway, it is important to be

aware of the possible problems.

Checklist

Continuous

dependent variable

Your dependent variable should be continuous (i.e. interval/ratio).
For example: Income, height, weight, number of years of schooling,
and so on. Although they are not really continuous, it is still very
common to use ratings as continuous variables, such as: “How
satisfied with your income are you?” (on a scale 1-10) or “To what

extent do you agree with the previous statement?” (on a scale 1-5).

Two or more
unrelated categories
in the independent

variable

Your independent variable should be categorical (i.e. nominal or
ordinal) and consist of two or more groups. Unrelated means that
the groups should be mutually excluded: no individual can be in
more than one of the groups. For example: low vs. medium vs. high
educational level; liberal vs. conservative vs. socialist political views;

or poor vs. fair, vs. good vs. excellent health; and so on.

No outliers

An outlier is an extreme (low or high) value. For example, if most
individuals have a test score between 40 and 60, but one individual
has a score of 96 or another individual has a score of 1, this will

distort the test.
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One-way ANOVA: Function

1. Go to the Menu bar, choose Analyze\Compare Means\One-way ANOVA.

2. In the left box, all your variables are displayed. You choose the variable you want
to have as your dependent variable and transfer it to the box called Dependent
list.

3. You also choose the variable you want as your independent variable and transfer
it to the box called Factor.

4. Go to the box Option. Tick the boxes called Descriptive, Homogeneity of variance
test, Brown-Forsythe, Welch and Means Plot.

5. Click on Continue and then on OK.
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One-way ANOVA: Syntax

ONEWAY DEPVAR BY INDEPVAR

/STATISTICS OPTIONS
/MISSING ANALYSIS.
DEPVAR Name of the continuous dependent variable
[t is possible to list more than one dependent variable
INDEPVAR Name of the categorical independent variable
OPTIONS List the options you want to be included

For example:
DESCRIPTIVES
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One-way ANOVA: Example

(Data: SPSS_datal.sav)

ONEWAY income BY bfast
/STATISTICS DESCRIPTIVES HOMOGENEITY WELCH
/MISSING ANALYSIS.

income Household income in thousands of dollars (Min=9; Max=1073)

bfast Preferred breakfast (1=Energy bar; 2=0atmeal; 3=Cereal)
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Output/Step 1

The table called Paired Samples Statistics shows the descriptive statistics for the variables,

including the mean value of the dependent variable (income) for each category of the

independent variable (bfast).

Househaold income inthousands

Descriptives

95% Confidence Interval for
Mean
M Mean Std. Deviation | Std. Error | Lower Bound Upper Bound Minimum | Maximum
Energy bar 1554 | 46,7651 39,96608 1,01383 44 7765 48,7537 5,00 424 00
Oatmeal 1549 | 60,7366 61,95588 1,574149 57,6488 63,8244 5,00 780,00
Cereal 1897 | 57,1687 60,04177 1,37854 54,4651 59,8723 5,00 1073,00
Total 5000 | 55,0406 5564475 ,7BA52 53,5006 56,5806 5,00 1073,00
Output/Step 2

The table called Test of Homogeneity of Variances shows the results from a Levene’s test for

testing the assumption of equal variances. Put differently, this test is concerned with whether or

not the variances of the categories are different from one another. The column called Sig. shows

the p-value for this test. If the p-value is larger than 0.05, we can use the results from the

standard ANOVA test. However, if the p-value is smaller than 0.05, it means that the assumption

of homogeneity of variance is violated and we cannot trust the standard ANOVA results. Instead,

we focus on the results from the Welch ANOVA. Note, however, than both these tests produce so-

called F statistics.

Test of Homogenedty of \Variances

Household income inthousands

Levene
Statistic df1 df2 Sig.
46,458 2 4987 000
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Output/Step 3

If the p-value for the Levene’s test had been larger than 0.05 in this example, we would have
focused on the table called ANOVA. The column called Sig. shows whether or not we have a
statistically significant difference in our dependent variable (income) between the categories of
the independent variable (bfast). A p-value that is smaller than 0.05 would suggest that there is

indeed a statistically significant difference (at the 5 % level).

ANOVA
Household income in thousands
Sum of
Squares df Mean Square F Sig.
EBetween Groups 166270934 2 82635 467 27,064 000
Within Groups 1525773082 4997 3053380
Total 1542301078 44949

Output/Step 4

Since the p-value for the Levene’s test in this example was smaller than 0.05, we instead focus on
the next table: Robust Tests of Equality of Means. The same principle as for the standard ANOVA
test applies here: if the p-value (in the column called Sig.) is smaller than 0.05, it means that we
have a statistically significant difference (at the 5 % level) in our dependent variable (income)

between the categories of the independent variable (bfast).

Robust Tests of Equality of Means

Household income inthousands

Statistic® df df2 Sig.
Welch 35,404 2 | 3209671 000

a. Asymptotically F distributed.
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8. CHI SQUARE

‘ 8.1 Chi-square \
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8.1 Chi-square

Quick facts

Number of variables Two

Scale of variable(s) Categorical (nominal/ordinal)

There are two different forms of the chi-square test: a) The multidimensional chi-square test,
and b) The goodness of fit chi-square test. It is the first form that will be covered in this part of

the guide. The second form is discussed in Section 14.3.

The multidimensional chi-square test assesses whether there is a relationship between two
categorical variables. For example, you want to see if young women smoke more than young
men. The variable gender has two categories (men and women) and, in this particular case, the
variable smoking consists of the categories: no smoking, occasional smoking and frequent
smoking. The multidimensional chi-square test can be thought of as a simple crosstable where

the distribution of these two variables is displayed:

No smoking Occasional smoking Frequent smoking
Men (age 15-24) 85 % 10 % 5%
Women (age 15-24) 70 % 20 % 10 %

Assumptions

First, you have to check your data to see that the assumptions behind the chi-square test hold. If

your data “passes” these assumptions, you will have a valid result.

Checklist

Two or more Both variables should be categorical (i.e. nominal or ordinal) and
unrelated categories consist of two or more groups. Unrelated means that the groups
in both variables should be mutually excluded: no individual can be in more than one

of the groups. For example: low vs. medium vs. high educational

level; liberal vs. conservative vs. socialist political views; or poor vs.

fair, vs. good vs. excellent health; and so on.
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Chi-square: Function

1. Go to the Menu bar, choose Analyze\Descriptive Statistics\Crosstabs.

2. A small window will open, where you see one big box and three small boxes. In
the left box, all your variables are displayed.

3. Here, you choose two variables: one to be the Row variable, and one to be the

Column variable.

Move your variables to the Row and Column boxes by using the arrows.

Click on Statistics.

Tick the box for Chi-square.

Click on Continue.

Tick the box called Suppress tables located below the box containing all variables.

Click on OK.

o N o 1oe
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Chi-square: Syntax

CROSSTABS
/TABLES= VARNAME1 BY VARNAME?2
/FORMAT=NOTABLES
/STATISTICS=TYPE

/COUNT ROUND CELL.
VARNAME1 Insert the name of the first variable you want to use.
This variable will be chosen for rows.
VARNAME? Insert the name of the second variable you want to use.

This variable will be chosen for columns.

/FORMAT=NOTABLES Insert this if you do not want SPSS to produce a cross table (in that

case you will only get the results from the chi-square test.
TYPE Choose the type of statistics you want to produce.

For example:

CHISQ
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Chi-square: Example

(Data: SPSS_datal.sav)

CROSSTABS
/TABLES=bfast BY gender
/FORMAT=NOTABLES
/STATISTICS=CHISQ

/COUNT ROUND CELL.
bfast Preferred breakfast (1=Energy bar; 2=0atmeal; 3=Cereal)
gender Gender (0=Man; 1=Woman)
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Output

The table called Chi-Square Tests shows the results from the chi-square test for the variables
bfast and gender. Here, we look at the row called Pearson Chi-Square and the column Asymp.
Sig. (2-sided) to see the p-value for the test. A p-value smaller than 0.05 indicates that there is a
statistically significant association (at the 5 % level) between the two variables in the test,
whereas a p-value larger than 0.05 suggests that there is not a statistically significant
association. Since the p-value in this example is 0.891, we can conclude that bfast and gender are

not associated with one another at a statistically significant level.

Chi-Square Tests

Asymp. Sig.
Yalue df (2-sided)
Pearson Chi-Square 2307 891
Likelihood Ratio 230 2 8491
Linear-by-Linear 168 1 Ge2
Association
M ofValid Cases 000

a. 0 cells (0,0%) have expected countless than 5. The
minimum expected countis 758,70.
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9. CORRELATION ANALYSIS

‘ 9.1 Correlation analysis \
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9.1 Correlation analysis

Number of variables Two or more
Scale of variable(s) Continuous (ratio/interval)

A correlation analysis tests the relationship between two continuous variables in terms of: a)
how strong the relationship is, and b) in what direction the relationship goes. The strength of the
relationship is given as a coefficient (the Pearson product-moment correlation coefficient, or
simply Pearson’s r) which can be anything between -1 and 1. But how do we know if the

relationship is strong or weak? This is not an exact science, but here is one rule of thumb:

Negative Positive

-1 1 Perfect
-09t0-0.7 0.7t00.9 Strong
-0.6to-04 0.4t00.6 Moderate
-03to-0.1 0.1t00.3 Weak

0 0 Zero

Thus, the coefficient can be negative or positive. These terms, “negative” and “positive”, are not
the same as good and bad (e.g. excellent health or poor health; high income or low income). They

merely reflect the direction of the relationship.

Negative As the values of Variable 1 increases, the values of Variable 2 decreases
Positive As the values of Variable 1 increases, the values of Variable 2 increases

Note however that correlation analysis does not imply anything about causality: Variable 1 does
not cause Variable 2 (or vice versa). The correlation analysis only says something about the

degree to which the two variables co-vary.
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Assumptions

First, you have to check your data to see that the assumptions behind the correlation analysis

hold. If your data “passes” these assumptions, you will have a valid result.

Checklist

Two continuous Both variables should be continuous (i.e. interval/ratio). For
variables example: Income, height, weight, number of years of schooling, and
so on. Although they are not really continuous, it is still rather
common to use ratings as continuous variables, such as: “How
satisfied with your income are you?” (on a scale 1-10) or “To what

extent do you agree with the previous statement?” (on a scale 1-5).

Linear relationship There needs to be a linear relationship between your two variables.
between the two You can check this by creating a scatterplot (described in Section
variables 4.7).

No outliers An outlier is an extreme (low or high) value. For example, if most

individuals have a test score between 40 and 60, but one individual
has a score of 96 or another individual has a score of 1, this will

distort the test.
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Correlation analysis: Function

1. Go to the Menu bar, choose Analyze\Correlate\Bivariate.

2. A new window called Bivariate Correlations will open.

3. In the left box, all your variables are displayed. Highlight the variables for which
you want to test the correlation, and then transfer them to Variables.

4. Click on OK.

Note that it is possible to include more than two variables, and in that case you will get

correlation coefficients for each pair of variables.
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Correlation analysis: Syntax

CORRELATIONS
/VARIABLES=VARNAMES
/PRINT=TWOTAIL NOSIG
/MISSING=PAIRWISE.

VARNAMES Insert the names of at least two variables
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Correlation analysis: Example

(Data: SPSS_datal.sav)

CORRELATIONS
/VARIABLES=jobsat age
/PRINT=TWOTAIL NOSIG
/MISSING=PAIRWISE.

jobsat Job satisfaction (1=Highly dissatisfied; 2=Somehwat dissatisfied;
3=Neutral; 4=Somewhat satisfied; 5=Highly satisfied)
age Age (Min=18; Max=79)
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Output

The table called Correlations shows the results from the correlation analysis of the two variables
jobsat and age. Note that the table is a matrix, meaning that it can be read from left to right or
from the top to the bottom. Here, we focus on the row called Pearson Correlation. Of course, the
correlation between jobsat and jobsat is perfect (r=1), and so is the correlation between age and
age (r=1). Now, remember that an increasing value for age means that the individual is older, but
an increasing value for jobsat means that the individual is less satisfied with his or her job. The
correlation coefficient for jobsat and age is 0.413, which is positive. In other words: as the age
increases, job satisfaction decreases. Concerning the strength of the correlation, 0.413 can be

said to be moderate.
Sig. (2-tailed) shows the p-value for the correlation. A p-value smaller than 0.05 suggests that

the correlation is statistically significant (at the 5 % level). SPSS also includes a significance test

at the 1 % level, indicated by the asterisks (**) presented next to the correlation coefficient.

Correlations

Joh
satisfaction Age inyears
Job satisfaction  Pearson Correlation 1 41 3“_
Sig. (2-tailed) 000
I 5000 5000
Ageinyears Pearsan Correlation 41 3 1
Sig. (2-tailed) 000
Y 5000 5000

** Correlation is significant at the 0.01 level (2-tailed).
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10. FACTOR ANALYSIS

10.1 Factor analysis
10.2 Cronbach’s alpha
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10.1 Factor analysis

Number of variables Two or more

Scale of variable(s) Continuous (ratio/interval) or approximately continuous

There are two general types of factor analysis: exploratory factor analysis and confirmatory
factor analysis. It is the first type that will be covered here. The main feature of exploratory
factor analysis (hereafter referred to as “factor analysis”) is that is enables us to investigate the
underlying structure in the pattern of correlations between a number of variables (often
referred to as “items”). If we have a large number of variables, we can thus investigate if these
variables represent a smaller number of factors - or “dimensions”. Before getting into factor
analysis in more detail, just a cautionary note: it is easy to let the data guide all your decisions,

but do not forget what theory tells you before making these decisions!

Variable 1

Variable 2 3

Variable 3

Variable 4

Variable 5 3

Variable 6
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Assumptions

First, you have to check your data to see that the assumptions behind the factor analysis hold. If

your data “passes” these assumptions, you will have a valid result.

Checklist

Ratio/interval/ordinal Your variables should be continuous (i.e. interval/ratio) or ordinal
variables (but still approximately continuous). For example: Income, height,

weight, number of years of schooling, or ratings.

Linear associations The variables in the factor analysis should be associated with each
other in a linear fashion (use scatter plots to check, see Section
4.7).

Sample size Factor analysis requires rather large samples. However,
recommendations on this topic vary greatly. Some
recommendations highlight the absolute sample size (here, lower
limits range from n=100 to n=500) whereas others says that
subject-to-variable ratio is important (and here, ratios from 2:1 to

20:1 are suggested).

No outliers An outlier is an extreme (low or high) value. For example, if most
individuals have a test score between 40 and 60, but one
individual has a score of 96 or another individual has a score of 1,

this will distort the test.

Suppose that we have asked a bunch of individuals, six questions about their health. We conduct
a factor analysis to see how many dimensions these questions reflect: do all questions reflect
only one dimension (namely “health”) or can they be categorised into two or more dimensions

(i.e. different types of health)?
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Pre-tests

First, we have to find out if it is a good idea to conduct a factor analysis at all. Here, you may use

two tests to help you decide:

Factor analysis or not?

Kaiser-Meyer-Olkin Measure of Sampling Adequacy

The Bartlett’s Test of Sphericity

The test called Kaiser-Meyer-Olkin Measure of Sampling Adequacy (in short: the KMO test)
reflects the sum of partial correlations relative to the sum of correlations. It varies between 0
and 1, where a value closer to 1 is better. It has been suggested to use 0.5 as a minimum

requirement. Thus, if the value is lower than 0.5, factor analysis may be inappropriate.

The Bartlett’s Test of Sphericity tests the hypothesis that the correlation matrix is an identity
matrix; if it is an identity matrix then there would be no correlations between the variables (and
that is obviously not very good). Thus, the test needs to be statistically significant (i.e. p<0.05) so
we are able to reject this hypothesis. If we cannot reject it, it would be inappropriate to conduct

a factor analysis.
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Number of factors

So, suppose that we find that it is suitable to conduct a factor analysis. How do we ascertain how

many factors/dimensions there are in our data? Well, there are several different ways to do this.

Determining the number of factors

Eigenvalue>1 Eigenvalues are indicators of the variance explained by a factor.
Using the rule “eigenvalue is greater than one” is very common.
The reasoning behind this rule is that a factor should account for
at least as much variance as any single variable. Thus, the average
of all eigenvalues is one, and the factor analysis should thus
extract factors that have an eigenvalue greater than this average

value.

Scree plot In a scree plot, factors have their eigenvalues plotted alongside
the y-axis (i.e. vertical axis) in the order or magnitude. Factors
explaining large amounts of variable appear to the left, whereas
factors explaining little variance are aligned to the right. The
somewhat weird task is here to “locate the elbow”. This means to
identify the number of factors stated before the line starts

becoming flat.

Explained variance This refers to the amount of variation that the factor explains.
Some suggest that 90 % should be used as a cut-off point, whereas

others go as low as 50 %.
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Factor loadings

Once we have decided on the number of factors, we retrieve the “factor loadings”. A factor
loading is basically a correlation coefficient (see Chapter 9) and, thus, it varies between -1 and
+1 (where a value closer to -1 or +1 indicates a stronger correlation). Factor loadings are given
for each variable, for each factor separately. In other words, a factor loading shows how strongly
a certain variable correlates with the given factor. There are no exact rules for deciding on when
a loading is strong enough, but one suggested rule of thumb is below -0.5 or above 0.5. However,
sometimes a variable has strong loadings for more than one factor (called “cross-loading”). This
can for example happen if you have not extracted enough factors, or if the factors are correlated.
Sometimes a variable has weak loadings for all factors; this may suggest that this variable is
weakly related to all other variables or that you need to explore an additional factor (or maybe

even exclude this specific variable).
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Rotation

A factor analysis has the most interpretative value when: 1) Each factor loads strongly on only
one factor; 2) Each factor shows at least three strong loadings; 3) Most loadings are either high
or low; and 4) We get a “simple” factor structure. Rotation is a way of maximizing high loadings
and minimizing low loadings so that we get the simplest factor structure possible. There are two

main types of rotation:

Orthogonal Assumes that the factors are uncorrelated

Examples of sub types: equamax, quartimax and varimax

Oblique Assumes that the factors are correlated

Examples of sub types: direct oblimin and promax

Thus, the orthogonal rotation is based on the assumption that the factors are not correlated to
each other, i.e. that the different factors represent different unrelated dimensions of what you
are examining. This is not always the case. For example, if you have several variables measuring
health, and find one factor that reflects physical health and another one reflecting psychological
health, it may not be reasonable to assume that physical and psychological health two unrelated

dimension. In that case, you need to change the type of rotation to oblique.
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Factor analysis: Function

1. Go to the Menu bar, choose Analyze\Dimension Reduction\Factor.

2. Anew window called Factor Analysis will open.

3. In the left box, all your variables are displayed. Highlight the variables that you
want to include in the analysis, and then transfer them to Variables.

4. To order Kaiser-Meyer-Olkin Measure of Sampling Adequacy and Bartlett’s Test of
Sphericity: click on Descriptives, tick the box called KMO and Bartlett's test of
sphericity, and then click on Continue.

5. To order a scree plot: click on Extraction, tick the box called Scree plot, and then
click on Continue.

6. Ifyou for some reason want to tell SPSS exactly how many factors you want, go to
Extraction, tick the box called Fixed number of factors, state the preferred number
of factors, and then click on Continue.

7. To change the rotation of the factor analysis: click on Rotation, tick the box for the
preferred type of rotation (None; Varimax; Direct Oblimin; Quartimax; Equamax;
or Promax), and then click on Continue. Note that you will only get rotated factor
loadings if SPSS identifies at least two factors.

8. Click on OK.
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Factor analysis: Syntax

FACTOR
/VARIABLES VARLIST1
/MISSING LISTWISE
JANALYSIS VARLIST2

/PLOT PLOTNAME

JEXTRACTION PC
JCRITERIA ITERATE(25)

/PRINT INITIAL TESTNAME EXTRACTION ROTATION

/CRITERIA MINEIGEN(1) ITERATE(25)

/ROTATION ROTATIONTYPE
/METHOD=CORRELATION.

VARLIST1

VARLIST2

TESTNAME

ROTATION

PLOTNAME

/CRITERIA ITERATE(25)

ROTATIONTYPE

List all the variables you want to analyse

List all the variables you want to analyse (same as VARLIST1)

Name of the test you want to order
For example:

KMO (KMO and Bartlett’s test of sphericity)

Add this here if you want to rotate your analysis

Name of the plot you want to order
For example:

EIGEN (Scree plot)

Add this here if you are rotating your analysis

Name of the type of rotation you want to use
For example:

VARIMAX
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Factor analysis: Example

(Data: SPSS_data2.sav)

FACTOR
/VARIABLES imp_ideas imp_rich imp_secure imp_good imp_help imp_success imp_risk
imp_behave imp_environ imp_trad
/MISSING LISTWISE
/ANALYSIS imp_ideas imp_rich imp_secure imp_good imp_help imp_success imp_risk
imp_behave imp_environ imp_trad
/PRINT INITIAL KMO EXTRACTION ROTATION
/PLOT EIGEN
/CRITERIA MINEIGEN(1) ITERATE(25)
/EXTRACTION PC
/CRITERIA ITERATE(25)
/ROTATION VARIMAX
/METHOD=CORRELATION.

imp_ideas Important to think up new ideas

imp_rich Important to be rich

imp_secure Important living in secure surroundings
imp_good Important to have a good time

imp_help Important to help the people

imp_success Important being very successful

imp_risk Important with adventure and taking risks
imp_behave Important to always behave properly
imp_environ Important looking after the environment
imp_trad Important with tradition

(1=Very much like me; 2=Like me; 3=Somewhat like me; 4=Not like

me; 5=Not at all like me)
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Output/Step 1

The first step is to look at the table called KMO and Bartlett’s Test. The estimate in the first row
is the result from the KMO test. The value here is 0.792, which suggests that the factor analysis is
appropriate. The estimate in the last row is the result from the Bartlett's Test of Sphericity. The

p-value here is 0.000, which also suggests that factor analysis is appropriate.

KMO and Bartlett's Test
Kaiser-Meyer-Olkin Measure of Sampling Adeguacy. ez
Bartlett's Test of Approx. Chi-Square 102321,410
Sphericity df 45
Sig. ,ooo
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Output/Step 2

The second step is to look at the table called Total Variance Explained. There is one row for each

factor-solution (called Component). With regard to Initial Eigenvalues and the column called

Total, the results show a suitable cut-off between two and three factors since the three-factor

solution has an eigenvalue below 1. Thus, this suggests that a two-factor solution is preferable.

Looking at the column called Cumulative %, the results show that the two-factor solution

together explain approximately 46 % of the variance. That is not a high percentage but we may

conclude that it is acceptable.

One important thing to know is that SPSS automatically chooses to proceed with the solution

that consists of the most factors that has an eigenvalue greater than one (in this case, the two-

factor solution).

Total Variance Explained

Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings
Component Total % of Variance | Cumulative % Total % of Variance | Cumulative % Total % of Variance | Cumulative %
1 2,989 29,887 29,887 2,989 29,887 29,887 2,449 24,495 24,495
2 1,620 16,197 46,084 1,620 16,197 46,084 2,159 21,589 46,084
3 929 9,286 55,370
4 843 8,427 63,797
5 758 7,582 71,379
6 645 6,447 77,826
7 601 6,014 83,840
8 561 5,613 89,453
a 540 5,400 94,853
10 5158 5,147 100,000

Extraction Method: Principal Component Analysis.
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Output/Step 3

The third step is to look at the graph called Scree Plot. Eigenvalues are presented alongside the
y-axis and the number of the component (i.e. factor) is presented alongside the x-axis. Here we
can see that the eigenvalues are getting much flatter (i.e. the elbow!) starting at the three-factor

solution. Thus, once again it can be argued that we should go with the two-factor solution.

Scree Plot

3,0

2,0

Eigenvalue

0,51

Component Number
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Output/Step 4
The fourth step is to look at the table called Rotated Component Matrix. This table shows the

factor loading for each variable and for each of the two factors separately.

Rotated Component Matrix®
Component
1 2
Important to think up new 205 591
ideas
Importantto be rich 038 7o
Important living in secure 624 164
surroundings
Important to have a good 053 593
time
Important to help the 665 161
people
Important being very 345 632
successful
Important with adventure - 046 708
and taking risks
Important to always 703 0aa
hehave properly
Important looking after the Ea2 076
environment
Important with tradition Fo -020

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser
Marmalization.

a. Rotation converged in 3 iterations.

We identify for with factor each variable has the higher loading, we can conclude that the two

factors contain the following variables:

Factor 1

Important living in secure surroundings (security)
Important to help the people (benevolence)

Important to always behave properly (conformity)
Important looking after the environment (universalism)

Important with tradition (tradition)
Factor 2

Important to think up new ideas (self-direction)

Important to be rich (power)
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Important to have a good time (hedonism)
Important being very successful (achievement)

Important with adventure and taking risks (stimulation)

The ten variables used in this factor analysis actually stem from a theory of human values,
developed by Schwartz. According to this theory, the variables should be categorised in the

following way:

Conservation: security, tradition, and conformity
Openness to change: self-direction, stimulation, and hedonism
Self-enhancement: power and achievement

Self-transcendence: benevolence and universalism

If we compare the theoretical categories with the factors derived from factor analysis, we
actually see that the Factor 1 includes all variables theoretically associated with conservation
and self-transcendence, whereas Factor 2 includes all variables theoretically associated with
openness to change and self-enhancement. What do we do with this information then? Well, we
need to examine possible reasons as to why the factor analysis did not reveal the same factors as
the theory proposes. If we find no apparent problems with the empirics (e.g. missing data,
problems with the questionnaire itself, etc.) we may suggest that the theory needs to be

modified. At least it is important to discuss the differences between the theory and the empirics.

Sometimes, we do not have a clear theory guiding the factor analysis and, thus, we have no a
priori understanding about which factors that are reasonable to expect. In that case, it is
common practice to focus on a factor solution with good properties (i.e. clear factor structure
and high factor loadings). It is always a trade-off between theory and empirics: if theory has

precedence over empirics, we may be more disposed to accept lower factor loadings.

161



A note on composite measures (indices)

A common reason for conducting a factor analysis is that we want to make a composite measure
(i.e. an index) of a set of variables. If these variables all fall into one single factor (with acceptable
factor loadings), that is safe to do. If they clearly fall into different factors, a single index for these
variables should not be calculated. Possible solutions could be to exclude variables not fitting
into the factor of choice. Another solution is to create more than one index, reflecting different

dimensions of the concept you focusing on.
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10.2 Cronbach’s alpha

Number of variables Two or more

Scale of variable(s) Continuous (ratio/interval) or approximately continuous

The common application of the Cronbach’s alpha is when we have a composite measure - i.e. an
index - and want to see if the variables included in the index actually reflect the same underlying
factor/dimension. Formally speaking, the Cronbach's alpha is a measure of internal consistency;
how closely related a number of items are as a group. The coefficient ranges between 0 and 1. A
high alpha value indicates that items measure an underlying factor. However, it is not a

statistical test but a test of reliability /consistency.

One important thing to note is that the Cronbach’s alpha is affected by the number of variables:

including a higher number of variables automatically increases the alpha value to some extent.
Rule of thumb

There are many rules of thumb with regard to what is considered a good or bad alpha value.

Generally, an alpha value of at least 0.7 is considered acceptable.

Alpha values

Between 0.7 and 1.0 Acceptable

Below 0.7 Not acceptable
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Cronbach’s alpha: Function

1. Go to the Menu bar, choose Analyze\Scale\Reliability Analysis.

2. A new window called Reliability Analysis will open.

3. In the left box, all your variables are displayed. Highlight the variables that you
want to include in the analysis, and then transfer them to [tems.

4. Ifyou want to see what would happen to the alpha value if you would exclude any
specific variable, click on Statistics. Tick the box called Scale if item deleted, and
then click on Continue.

5. Click on OK.
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Cronbach’s alpha: Syntax

RELIABILITY
/VARIABLES=VARLIST
/SCALE('ALL VARIABLES") ALL
/MODEL=ALPHA
/SUMMARY=TOTAL.

VARLIST List all the variables you want to analyse

/SUMMARY=TOTAL Add this if you want to see how the alpha value changes if a certain

variable was excluded
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Cronbach’s alpha: Example

(Data: SPSS_dataZ2.sav)

RELIABILITY
/VARIABLES=imp_secure imp_help imp_behave imp_environ imp_trad
/SCALE('ALL VARIABLES") ALL
/MODEL=ALPHA
/SUMMARY=TOTAL.

imp_secure Important living in secure surroundings
imp_help Important to help the people
imp_behave Important to always behave properly
imp_environ Important looking after the environment
imp_trad Important with tradition

(1=Very much like me; 2=Like me; 3=Somewhat like me; 4=Not like

me; 5=Not at all like me)
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Output/Step 1

The first step is to look at the table called Reliability Statistics. Here, you see the alpha value. In

this case, itis 0.716.

Reliability Statistics

Cronbach's

Alpha

M of tems

T16

5
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Output/Step 2

The second step is to look at the table called Item-Total Statistics. In the column for Cronbach’s

Alpha if Item Deleted, you see what happens to the alpha value if any of the specific variables

would be excluded from the test. In this specific case, the exclusion of any variable would

actually decrease the alpha value - hence, it is better to keep all the variables in the index. If the

results had been the opposite (i.e. the alpha value would increase if a certain variable was

excluded), we may have considered removing that variable from the index - but any such

decisions should always be evaluated against what is stipulated by the theory you use.

item-Total Statistics

Scale Corrected Cronbach's
Scale Mean if Yariance if [tem-Total Alphaifltem
[term Deleted [tem Deleted Correlation Deleted
Important living in secure 972 13,264 444 681
surroundings
Important to help the 9,85 13,8148 470 672
people
Importantto always 957 12,426 508 G54
hehave properly
Important looking after the 89,71 13,505 478 Nilats]
environment
Important with tradition 964 12,401 480 Nalats]
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11.X,YAND Z

11.1XandY

11.2 Z: confounding, mediating and moderating variables

We talk a lot about variables in this guide, because variables are the cornerstones of quantitative
data materials and quantitative data analysis. Other terms are sometimes used instead of

“variables” - such as “indicators”, “measures” or “items” - but they basically reflect the same

thing.

Associations

In many types of analysis — such as when we compare means or conduct regression analysis -
we are interested in the association between two (or more) variables. The term “association”, or
“relationship”, reflects the assumption that the variables are related to one another in some way.

Basically, that means that the variables are correlated.

Effects

We often assume that the one variable has an “effect” on another variable. Here, we are talking
about statistical effect, not causal effect. In other words, while we may find that one of the
variables has a statistical effect on the other variable, it does not mean that the first variable
causes the second variable. A phrase commonly used in statistics to capture this is: “correlation

does not imply causation”.
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X YandZ

Variables play different roles in the analysis. Researchers often use various terms to distinguish

between these roles. Here, we will try to shed some light on the terms that are used.

e

X Independent variable; Exposure; Predictor
Y Dependent variable; Outcome
Z Covariate; Confounder; Mediator; Moderator; Effect modifier
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11.1 XandY

If read about a variable being “independent”, an “exposure”, or a “predictor” - what does that

mean? Basically, it means that you think that this variable has an (statistical) effect on another

“«_n

variable. For the sake of simplicity, let us just call this type of variable “x”. The other variable -

the one that x is assumed to affect - is called “dependent” variable or “outcome”. Again, to make

“«__n

it simpler, we can call it “y”.

Some examples
Smoking (x) -> Lung cancer (y)
Unemployment (x) -> Low income (y)

Yoga lessons (x) -> Lower stress levels (y)

The examples presented above may suggest that it is easy to know which variable is x and which
is y, but this is not always the case. Sometimes we deal with more complex issues, such as the
association between health and educational attainment: does a lower educational attainment (x)
lead to worse health (y) or does poor health (x) result in lower educational attainment (y)? In
cases like that you need to think about that is more reasonable, and what previous literature and

theory would say about the issue at hand.
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11.2 Z: confounding, mediating and moderating variables

The association - between x and y - that we are most interested in is often called “main
association”. This is the focus of our analysis. However, sometimes there are other variables that
we might find important for this main association. Strictly speaking, those variables are also
called “x” (or “covariates”) but for clarity we will label them “z”. There are three important types

of z-variables that are common in data analysis:

Types of “z”

Confounder | Both x and y are affected by z

Mediator A part of the association between x and y goes through z

Moderator | Z affects the association between x and y

Confounding variables

A confounder is a variable that influences both the x-variable and the y-variable and, thus, makes

you think that there is an actual relationship between x and y (but it is due to z). Put differently,
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the confounder distorts the analysis. Suppose that we find that people who consume a lot of
coffee (x) have an increased risk of lung cancer (y). A probable confounder could be cigarette

smoking (y): smokers drink more coffee and have greater risk of lung cancer.

In data analysis, we commonly want to get rid of the confounding effects - in that context, we

often talk about “controlling” or “adjusting” for confounders.

Mediating variables

A mediator is a variable that is influenced by the x-variable and influences the y-variable. Thus,
some (it could be a little or a lot) of the effect of x on y is mediated through z. For example, let us
say that we are interested in the association between parents’ educational attainment (x) and
children’s success on the labour market (y). It could be reasonable to assume that the
educational attainment of the parents (x) influences children’s own educational attainment (z),

which in turn affects their following success on the labour market (y).

In data analysis, we often talk about “explaining” an association by the inclusion of certain
mediating variables. Particularly when one has a data material that consists of information
collected across several points in time (i.e. longitudinal or life course data), it is common to talk
about mediation as “pathways” or “mechanisms”. It should however be highlighted that
mediation analysis has become increasingly criticized (for statistical reasons that we will not

discuss here).
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Moderating (or effect modifying) variables

A moderator (or effect modifier) is a variable that influences the very association between the x-
variable and the y-variable. Thus, the association between x and y looks different depending on
the value of z. Suppose that we are interested in the association between unemployment (x) and
ill-health (y). Here, it could be reasonably to assume that men’s and women'’s health is affected

differently by unemployment - in that case, gender would be a moderating variable (z).

In data analysis, moderating variables are examined through something called “interaction

analysis” (see Chapter 17).
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12. PREPERATIONS FOR REGRESSION ANALYSIS

12.1 What type of regression should be used?

12.2 Dummies

12.3 Standardization: z-scores

12.4 Analytical strategy
12.5 Missing data

12.6 From study sample to analytical sample




12.1 What type of regression should be used?

There are many different types of regression analysis. Some of the most common types are
included in this guide: linear, logistic, ordinal regression, multinomial and Poisson. Which one

you should choose depends on your outcome (y).

Outcome (y) Type of regression

Nominal with two categories, i.e. dichotomous (binary) Logistic regression
Nominal with more than two categories, i.e. polytomous Multinomial regression
Ordinal Ordinal regression
Continuous (ratio/interval) Linear regression

Just to underline it one more time: the type of regression you choose depends on your outcome
(v). However, your x-variable(s) can take on any form - they can be categorical (i.e.
nominal/ordinal) or continuous (i.e. ratio/interval). If you include only one x-variable in your
regression analysis, this is called “simple” (or “bivariate”) regression analysis. If you include two
or more x-variables in your regression analysis, this is called “multiple” regression analysis. In
multivariate regression analysis, it is possible to mix different types of x-variables: you can thus

use both categorical and continuous x-variables.
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12.2 Dummies

When we conduct regression analysis - regardless of the type — we can only include x-variables
that are continuous (ratio/interval) or binary (i.e. they consist of only two values). A binary
variable is sometimes called “dichotomous”, “binomial” or “dummy”. If we have a categorical
variable with more than two values, such as in the example below, we need to “trick” the
regression analysis to correctly analyse those variables. To do this, we create one dummy for

each category of the variable:

Example
Categories Dummy

Educational attainment 1=Compulsory 1=Compulsory, 0=0ther
2=Upper secondary 1=Upper secondary, 0=0Other
3=University 1=University, 0=0ther

In the regression analysis, all dummies for the specific variable should be included as x-
variables, except one. The dummy that you exclude - and it is your own choice which one you
exclude - will be the “reference category”. The other dummies will be compared to the dummy
that is excluded. Creating dummies is much easier using syntax that through the menus, but if
you want to use the menus, you need to go through Recode Into Different Variables separately

for each dummy.
A note on the choice of reference category

There are many different ways of choosing a reference category:

Choosing a reference category

The largest category, because we want a stable group to compare the other categories to

The group in the middle, to represent the average

The “best off” category - if increasing values of the outcome is more negative

The “worst off” category - if increasing values of the outcome is more positive

Note: never choose a very small group - you may end up with very strange estimates!
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Dummies: Syntax

EXECUTE.

For each dummy separately

RECODE VARNAME (OLD AND NEW VALUES) INTO DUMMYNAME.

VARNAME

DUMMYNAME

(OLD AND NEW VALUES)

Insert the name of the original variable
For example:

income

Insert the name of the dummy variable
For example:

income_low

or

income_middle

or

education_high
Specify how you want to transform the values

Some examples:

(1=1) (2=0) (3=0)
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Dummies: Example

(Data: SPSS_datal.sav)

RECODE hometype (1=1) (2=0) (3=0) (4=0) INTO hometype_singlefam.
RECODE hometype (1=0) (2=1) (3=0) (4=0) INTO hometype_multiplefam.
RECODE hometype (1=0) (2=0) (3=1) (4=0) INTO hometype_townhouse.
RECODE hometype (1=0) (2=0) (3=0) (4=1) INTO hometype_mobilehome.
EXECUTE.

hometype Building type (1=Single family; 2=Multiple family; 3=Townhouse;
4=Mobile home)
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12.3 Standardization: z-scores

The standard score - or the z-score - is very useful when we have continuous (ratio/interval)
variables with different normal distributions. For example, if we have one variable called income
(measured as annual household income in Swedish crowns) and another variable called years of
schooling (measured as the total number of years spent in the educational system), these
variables obviously have very different distributions. Suppose we want to compare which one -
income or years of schooling - has a larger statistical effect on our outcome. That is not possible
using the variables we have. The solution is to standardize (i.e. calculate z-scores for) these two

variables so that they are comparable.

Z-scores are expressed in terms of standard deviations from the mean. What we do is that we
take a variable and “rescale” it so that it has a mean of 0 and a standard deviation of 1. Each
individual’s value on the standardized variable indicates its difference from the mean of the
original (unstandardized) variable in number of standard deviations. A value of 1.5 would thus
suggest that this individual has a value that is 1% standard deviations above the mean, whereas
a value of -2 would suggest that this individual has a value that is 2 standard deviations below

the mean.
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Standardization: z-scores: Function

W N R

Go to the Menu bar, choose Analyze\Descriptive Statistics\Descriptives.

This will open up a new window called Descriptives.

A small window will open, where you see two boxes.

In the left box, all your variables are displayed. Here you choose the variable(s)
you want to standardize.

Click on the small arrow between the boxes to transfer the variable(s) to the box
to the right.

Tick the box called Save standardized values as variables.

Click on OK to generate a standardized version of the variable(s).
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Standardization: z-scores: Syntax

DESCRIPTIVES VARIABLES=VARNAME

/SAVE.
VARNAME Insert the name of the variable you want to use.
/SAVE Insert this if you want to produce z-scores for your variable.
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Standardization: z-scores: Example

(Data: SPSS_datal.sav)

DESCRIPTIVES VARIABLES=unempl 03 age

/SAVE.
unempl_03 Unemployment days in 2003 (ranges from 0 to 365)
age Age in years (Min=18; Max=79)
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12.4 Analytical strategy

Regression analysis is of course about data, but it is also about design. The way in which you
think your variables are related needs to be translated into an “analytical strategy” (or
“modelling strategy”. A good way to start is to make a drawing with boxes and arrows: each
variable is put into one box and then you put simple-headed or double-headed arrows between

the boxes to illustrate how the variables are associated to one another.

A good analytical strategy should reflect the aim of the study. Suppose we are interested in the
association between children’s cognitive ability and educational attainment in adulthood. To
examine this association is thus the aim of the study. We think that this association may be
confounded by parents’ educational attainment and mediated by children’s school marks.
Moreover, we suspect that the association may look different depending on the child’s gender.

The research questions can thus be formulated as:

Question 1. Is children’s cognitive ability associated with educational attainment in
adulthood?

Question 2. If so, is this association confounded by parents’ educational attainment?
Question 3. To what extent is the association between children’s cognitive ability and
educational attainment in adulthood mediated by school marks in childhood?

Question 4. Is there any gender difference in the association between children’s cognitive

ability and educational attainment in adulthood?

Accordingly, these are the variables we need to include in our analysis:

X Cognitive ability in childhood

y Educational attainment in adulthood
z (confounder) Parents’ educational attainment

z (mediator) School marks in childhood

z (moderator) Child’s gender
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And this is how we may choose to illustrate our analytical strategy:

Gender
(z: moderator)

Educational
Cognitive ability attainment in
in childhood adulthood

) 2

School marks
in childhood

Parents’ (z: mediator)

educational
attainment
(z: confounder)

Often, we want to break down our analysis in different steps - or “regression models”. Each
model commonly reflects one research question. In the present example, we would have a whole

set of models that would include different variables:

Model 1 Cognitive ability in childhood (x) and educational attainment in adulthood (y)

Model 2 Cognitive ability in childhood (x), educational attainment in adulthood (y), and
parents’ educational attainment (z)

Model 3 Cognitive ability in childhood (x), educational attainment in adulthood (y), and
school marks in childhood (z)

Model 4 Cognitive ability in childhood (x), educational attainment in adulthood (y), and

gender (z)
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12.5 Missing data

As we discussed earlier (see Section 2.1), it is common that some individuals in our data
material have missing information for one or more of the variables. Missing data is sometimes
called “attrition” (particularly in register data) and sometimes “non-reponse” (particularly in

survey/questionnaire data). Attrition or non-response can be external or internal:

External or internal?

External For some reason, the individuals are not included in the register data (they have
immigrated, died, moved, are imprisoned, etc.) or do not participate in the

survey (they decline, are too sick, cannot be reached, etc.).

Internal For some reason, the individual has no information for a specific variable or a set
or variables (they missed a page of the questionnaire, they refuse to answer

specific questions, etc.).

As shown above, there are many reasons for missing data. If the missingness is problematic or
not, depend on which type of missing data we have. In statistical analysis, there are three types

of missing data:

Types of missing data

MCAR Missing Completely At Random:
The probability of missing data is unrelated to both observed and unobserved data; it
is completely by chance alone

MAR  Missing At Random:

The probability of missing data is unrelated to unobserved data but may be related to
observed data

NMAR Missing Not At Random:

The probability of missing data is related to unobserved data

This was probably a bit confusing - let us exemplify the differences between MCAR, MAR and
NMAR. Suppose we examine the distribution of income in the Swedish population. If missing
data were MCAR, it means that the missingness is unrelated to both observed data (e.g. gender,
employment status) and unobserved data (e.g. lower income does not influence the risk of
missingness). If missing data were MAR, it would mean that missingness could be related to

other variables in the data set, but the probability of missingness is not increased by certain
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values of the variable itself (e.g. individuals having lower incomes). Finally, if individuals who

had certain values of the variables itself were more likely to be missing, we would have MNAR.
How may we deal with missing data?

There are several ways of assessing whether missingness is MCAR, MAR or MNAR, but we are
not going to get into advanced statistical stuff here. The most important advice is that you have
to know your data well: produce descriptive statistics for your study variables to see the extent
of missingness in the data material. Obviously, if you have a small number of individuals in your
data material, a couple of missing values would have more serious consequences than if you

have a couple of missing values in a data material based on the total population of a country.

A sound strategy to map out and illustrate potential problems with missingness is first to find
out anything you can about the reasons for external attrition. Why are some individuals not
included in your data set? Is it likely that they similar in any important way or is the missingness
due to technical reasons? Then you get into the issue of internal attrition. Analysing internal
attrition is simply called “attrition analysis” or “non-response analysis”. What you do here is to
pick one or more variables for which all individuals in the study sample has information, such as
gender, age, or some other socio-demographic variable. Produce descriptive statistics (choice of
type of descriptive statistics depends on the measurement scale) for those variables, for all
individuals in the study sample. Then you produce descriptive statistics for the same variables,
but now only for the individuals in the analytical sample (Section 12.6 describes how to define an

analytical sample).

For example, our study sample contains 10,000 individuals. Approximately 49 % are men and 51
% are women. The mean age is 45 years. Due to missing data on some of the variables we want
to include in our analysis, our analytical sample is reduced to 9,451 individuals. In this sample,
46 % are men and 54 % are women. The mean age is 47 years. You can illustrate this in a simple

descriptive table:

Study sample (n=10,000) | Analytical sample (n=9,451)

Gender
Man 49 % 46 %
Woman 51 % 54 %
Age (mean) 45 years 47 years
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If we thus compare the distribution of gender and age in the study sample with the distribution
of gender and age in the analytical sample, we can conclude that women and older individuals
are more likely to be included in our analysis. This is information that could be important to

have when we interpret our results.
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12.6 From study sample to analytical sample

This section is an attempt to connect the two previous sections. It is like this: we often split our
analysis in different steps or models. Thus, different models include different sets of variables;
and different variables have different amount of missing data. The total number of individuals
may thus vary across models, and this makes it difficult to compare the results between the
models. In other words, we must ensure that all our analyses - and all steps of analysis - are
based on the same individuals. These individuals represent our “analytical sample” (or “effective
sample”). Put differently: our analytical sample is defined as only those individuals who have

valid information (i.e. no missing) for all variables we use in our analysis.

It is good to first check the amount of missing data for each of the variables included in the
analysis, to see if any certain variable is particularly problematic in terms of missingness. If a
variable has serious problems with missingness, it could be wise to exclude it from the analysis

(but it depends on how important the variable is to you).

The analytical sample should not only be the basis for regression analysis, but all other statistical
tests and descriptive statistics should also be based on the analytical sample. Moreover, make
sure to state the total number of individuals in the heading of each table and each figure. It could

look something like this:

Some examples

Table 1. Descriptive statistics for all study variables (n=9,451).

Figure 5. Histogram of annual income (n=9,451).

Table 3. The association between educational attainment and mortality. Results from logistic

regression analysis, separately for men (n=4,701) and women (n=4,750).
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The “pop” variable

It is rather easy to define an analytical sample in SPSS. First, you need to determine exactly
which variables are included in the analysis (i.e. all variable you use, not all variables in the data
material). They should be properly recoded as you want them, and all missing values should be
coded as actually missing in SPSS (Recode, see Section 5.1). Second, you create a “pop” variable -
“pop” stands for population - through the Compute (see Section 5.2). Third, you make a
frequency table of the pop variable. The individuals who have the highest value on this variable
constitute your analytical sample. Finally, you use this pop variable to restrict everything you do
from that point onwards, to include only those with the desired value on the pop variable (Select

cases, see Section 5.3).
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From study sample to analytical sample: Syntax

COMPUTE NAME=nvalid(VARLIST).

EXECUTE.
NAME Insert the name you want to give the variable indicating the
analytical sample.
VARLIST Insert the names of all study variables, separate them by comma.

For example:

gender, age, marital_status, income

Note: SPSS will calculate the number of valid values with this command. If you include a variable
list with four variables, the pop variable will range between zero and four. Individuals with the
value four will have valid information for all variables and thus constitute your analytical sample
(and subsequently, you select only these individuals through the select-cases command). If you
would have included nine variables, the pop variable will range between zero and nine. In that

case, individuals with the value nine would have constituted your analytical sample.
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From study sample to analytical sample: Example

(Data: SPSS_datal.sav)

COMPUTE pop=nvalid(gender, age, marital, jobsat, unempl_03, unempl_05).
EXECUTE.
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13. LINEAR REGRESSION

13.1 Simple linear regression

13.2 Multiple linear regression

13.3 Model diagnostics

Before you begin, make sure that you have defined your analytical sample correctly (see Section

12.6).
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Introduction

Linear regression is used when y is continuous (ratio/interval; see Section 2.2). If you have only
one ¥, it is called “simple” linear regression, and if you have more than one x, it is called
“multiple” linear regression. Regardless of whether you are doing a simple or a multiple
regression, the x-variables can be categorical (nominal/ordinal) and/or continuous

(ratio/interval).

Key information from linear regression

1. Direction

Negative Minus sign before the B coefficient

Positive No minus sign before the B coefficient

2. Effect size

B coefficient How much does y change for every one-unit increase in x?

3. Statistical significance

P-value p<0.05 Statistically significant at the 5 % level
p<0.01 Statistically significant at the 1 % level
p<0.001 Statistically significant at the 0.1 % level

95 9% Confidence intervals Interval includes 0:
Statistically significant at the 5 % level
Interval does not include 0:

Statistically non-significant at the 5 % level

B coefficients (B)

A linear regression analysis describes the linear association between x and y. The effect that x
has on y is estimated through a “Beta coefficient” - or “B coefficient”. The B coefficient is
interpreted in the following way: “for every one-unit increase in %, y increases/decreases by [the
B coefficient]”. Accordingly, if you get a negative B coefficient (below 0), you say: “for every one-
unit increase in x, y decreases by [the B coefficient]”, and if you get a positive B coefficient
(above 0), you say: “for every one-unit increase in x, y increases by [the B coefficient]”. What the
B coefficient actually stands for - and whether we can say that an effect is small or big - depends

on the values of x and y.
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P-values and confidence intervals

In linear regression analysis you can of course get information about statistical significance, in
terms of both p-values and confidence intervals. The p-values and the confidence intervals will
give you partly different information, but: they are not contradictory. If the p-value is below
0.05, the 95 % confidence interval will not include 0 (statistical significance at the 5 % level),
and if the p-value is above 0.05, the 95 % confidence interval will include 0 (statistical non-

significance at the 5 % level).

Note that when you look at the p-value, you can rather easily distinguish between the
significance levels (i.e. you can directly say whether you have statistical significance at the 5 %
level, the 1 % level, or the 0.1 % level). When it comes to confidence intervals, SPSS will by
default choose 95 % level confidence intervals (i.e. statistical significance at the 5 % level). For
some analyses, it is however possible to change the confidence level for the intervals. For

example, you may instruct SPSS to show 99 % confidence intervals instead.

R-Squared

You also get information about something called “R-Squared” or “R2”. This term refers to
amount of the variation in y that is explained by the inclusion of the x-variable. The R2 value
ranges between 0 and 1 - a higher value means a higher amount of explained variation.
Generally speaking, the higher the R2 values, the better the model fits the data (i.e. the model has
better predictive ability).

Simple versus multiple regression models

The difference between simple and multiple regression models, is that in a multiple regression
each x-variable’s effect on y is estimated while taking into account the other x-variables’ effects
on y. We then say that these other x-variables are “held constant”, or “adjusted for”, or
“controlled for”. Because of this, multiple regression analysis is a way of dealing with the issue of

“confounding” variables, and to some extent also “mediating” variables (see Section 11.2).
It is highly advisable to run a simple linear regression for each of the x-variables before

including them in a multiple regression. Otherwise, you will not have anything to compare the

adjusted B coefficients with (i.e. what happened to the B coefficients when other x-variables
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were included in the analysis). Including multiple x-variables in the same model usually (but not
always) means that the associations are reduced in strength - which would of course be

expected if the x-variables overlapped in their effect on y.

Define your analytical sample

Before you begin, make sure that you have defined your analytical sample correctly (see Section

12.6).
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13.1 Simple linear regression

Quick facts

Number of variables One dependent (y)

One independent (x)

Scale of variable(s) Dependent: continuous (ratio/interval) and normally distributed
Independent: categorical (nominal/ordinal) or continuous

(ratio/interval)
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Simple linear regression: Function

1. Go to the Menu bar, choose Analyze\Regression\Linear.

2. A new window called Linear Regression will open.

3. In the left box, all your variables are displayed. You choose the variable you want
to have as your dependent variable (y) and transfer it to the box called
Dependent.

4. Then you choose the variable you want as your independent variable (x) and

transfer it to the box called Independent(s).

Click on Statistics.

Tick the box for Confidence Intervals.

Click on Continue.

©® N o wu

Click on OK to get the results in your Output window.
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Simple linear regression: Syntax

REGRESSION
JMISSING LISTWISE
/STATISTICS COEFF OUTS CI(95) R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT DEPVAR
/METHOD=ENTER INDEPVAR.

DEPVAR Name of the dependent variable.

INDEPVAR Name of the independent variable.
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Simple linear regression with a continuous x

Example 1

Suppose we want to examine the association between unemployment days (x) and income (y)
by means of a simple linear regression analysis. Unemployment days are measured as the total
number of days in unemployment during a year, and ranges from 0 to 365. Income is
measured in thousands of Swedish crowns per month and ranges between 20 and 40
thousands of Swedish crowns. Let us say that we get a B coefficient that is -0.13. That would
mean that for each one-unit increase in unemployment days, income would decrease by 0.13.
Given the values of our variables, we can conclude that for each additional day in

unemployment, monthly income would decrease by 130 SEK on average.

Example 2

In another example, we may examine the association between intelligence scores (x) and years
of schooling (y). Intelligence scores are measured by a series of tests that render various
amounts of points, and ranges between 20 and 160 points. Years of schooling is measured as
the total number of years spent in the educational system and ranges from 9 to 20 years. Here,
we get a B coefficient that is 0.08. Given the values of our variables, we can conclude that for
each additional point on the intelligence variable, the number of years spent in the educational

system increases by 0.08 on average (corresponding to approximately one month).
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Simple linear regression with a continuous x: Example

(Data: SPSS_datal.sav)

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS CI(95) R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT hourstv
/METHOD=ENTER age.

hourstv Hours spent watching TV last week (Min=0; Max=36)
age Age in years (Min=18; Max=79)
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Output/Step 1

The first step is to look at the table called Model Summary. Here you focus on the column for
Adjusted R Square, which reflects the so-called “R2”. The value here reflects how much of the
variation in the dependent variable (hourstv) that is explained by the variation in the
independent variable (age). Just move the decimal two places to the right to be able to interpret
the R2 value as percentages. Accordingly, we see that age explains 0.1 % of the variation in hours

spent watching TV (that is obviously very little).

Model Summary

Adjusted R Std. Error of
Madel F R Square Square the Estimate
1 0357 001 001 5171

a. Predictors: (Constant), Age in years
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Output/Step 2

The second step is to look at the table called Coefficients. Start focusing on the column called B;
this is the B coefficient. The B coefficient in this example is -0.011, which first of all means we
have a negative association between age and hourstv. Based on what we know about the values
of these two variables, we can conclude the following: for every one year increase in age, the

number of hours spent watching TV decreases by 0.011 hours.

The column called Sig. shows the p-value. It is 0.010, which means that the association between
age and hourstv is statistically significant (at the 1 % level). Then we look at the part of the table
called 95 % Confidence Interval for B. This gives us the lower confidence limit (Lower Bound)
and the upper confidence limit (Upper Bound). In the present example, the lower limit is -0.019

whereas the upper limit is -0.003. The interval does not include the null value (which is always

x=0 in linear regression) and, thus, the results are statistically significant (at the 5 % level).

Coefficients®
Standardized
Unstandardized Coefficients Coefficients 95 0% Confidence Interval for B
Model B Std. Error Beta 1 5ig. Lower Bound Upper Bound
1 (Constant) 20,145 207 97,194 000 19,739 20,552
Age inyears -,011 004 -036 -2,574 010 -014 -,003

a. DependentVariable: Hours spentwatching TV last week
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Simple linear regression with a binary x

Example 1

Suppose we want to examine the association between gender (x) and income (y) by means of a
simple linear regression analysis. Gender has the values 0=Man and 1=Woman. Income is
measured in thousands of Swedish crowns per month and ranges between 20 and 40
thousands of Swedish crowns. Let us say that we get a B coefficient that is -1.3. That would
mean that for every one-unit increase in gender - i.e. changing from the category of men to the
category of women - income would decrease by 1.2. Given the values of our variables, we can

conclude that women have 1200 SEK less in monthly income compared to men.

Example 2

Suppose we want to examine the association between having small children (x) and the
number of furry pets (y) by means of a simple linear regression analysis. Having small children
is measured as either 0=No or 1=Yes. The number of furry pets is measured as the number of
cats, dogs or other furry animals living in the household, and ranges between 0 and 10. Let us
say that we get a B coefficient that is 0.98. That would mean that for every one-unit increase in
having small children - i.e. going from not having small children to having small children - the
number of furry pets would increase by 0.98. Given the values of our variables, we can
conclude that those who have small children have almost one more furry pet compared to

those who do not have small children.
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Simple linear regression with a binary x: Example

(Data: SPSS_datal.sav)

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS CI(95) R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT hourstv
/METHOD=ENTER marital.

hourstv Hours spent watching TV last week (Min=0; Max=36)

marital Marital status (O=Unmarried; 1=Married)
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Output/Step 1

The first step is to look at the table called Model Summary. Here you focus on the column for

Adjusted R Square, which reflects the so-called “R2”. The value here reflects how much of the

variation in the dependent variable (hourstv) that is explained by the variation in the

independent variable (marital). Just move the decimal two places to the right to be able to

interpret the R2 value as percentages. Accordingly, we see that marital status explains 0.1 % of

the variation in hours spent watching TV (that is obviously not much).

Model Summary

Adjusted B Std. Error of
Madel E R Square Square the Estimate
1 ,035° o2 001 5171

a. Predictors: (Constant), Marital status
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Output/Step 2

The second step is to look at the table called Coefficients. Start focusing on the column called B;

this is the B coefficient. The B coefficient in this example is 0.403, which first of all means we

have a positive association between marital and hourstv. Based on what we know about the

values of these two variables, we can conclude the following: the number of hours spent

watching TV is 0.403 higher among those who are married compared to those who are

unmarried.

The column called Sig. shows the p-value. It is 0.006, which means that the association between

marital and hourstv is statistically significant (at the 1 % level). Then we look at the part of the

table called 95 % Confidence Interval for B. This gives us the lower confidence limit (Lower

Bound) and the upper confidence limit (Upper Bound). In the present example, the lower limit is

0.116 and the upper limit is 0.690. The interval does not include the null value (which is always

x=0 in linear regression) and, thus, the results are statistically significant (at the 5 % level).

Coefficients®

Standardized
Unstandardized Coefficients Coefficients 95 0% Confidence Interval for B
Madel B Std. Error Beta t 5ig. Lower Bound | Upper Bound
1 (Constant) 19,449 o2 190,268 ,0oa 19,249 19,650
Marital status 403 146 038 2,753 006 16 640

a. Dependent Variahle: Hours spent watching TV [ast week
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Simple linear regression with a categorical x (dummies)

Example 1

We want to investigate the association between educational attainment (x) and income (y) by
means of a simple linear regression analysis. Educational attainment has the values:
1=Compulsory education, 2=Upper secondary education, and 3=University education. Income
is measured in thousands of Swedish crowns per month and ranges between 20 and 40
thousands of Swedish crowns. Since our x-variable is categorical with more than two
categories, we have to create dummies (one 0/1 coded variable for each category). We choose
those with compulsory education as our reference category, meaning that this dummy will not
be included in the analysis. We will thus get one B coefficient for upper secondary education
and one B coefficient for university education. Each of these should be compared to the
reference category. Let us say that we get a B coefficient for upper secondary education that is
2.1 and we get a B coefficient for university education that is 3.4. First of all, we can conclude -
based on the direction of the estimates - that higher educational attainment is associated with
higher income. More specifically, those with upper secondary education have (on average)
2100 SEK higher income compared to those with compulsory education, and those with
university education have (on average) 3400 SEK higher income compared to those with

compulsory education.
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Example 2

Suppose we are interested in the association between family type (x) and children’s average
school marks (y). Family type has three categories: 1=Two-parent household, 2=]Joint custody,
and 3=Single-parent household. Children’s average school marks range from 1 to 5. Since our
x-variable is categorical with more than two categories, we have to create dummies (one 0/1
coded variable for each category). We choose children living in a two-parent household as our
reference category, meaning that this dummy will not be included in the analysis. We will thus
get one B coefficient for joint custody and one B coefficient for single-parent household. Each
of these should be compared to the reference category. The analysis results in a B coefficient of
-0.1 for joint custody and a B coefficient of -0.9 for single-parent household. That would mean
that children living in joint custody families have a 0.1 point lower score for average school
marks compared to those living in two-parent households. Moreover, children living in single-
parent households have a 0.9 point lower score for average school marks compared to those

living in two-parent households.
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Simple linear regression with a categorical x (dummies): Example

(Data: SPSS_datal.sav)

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS CI(95) R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT income
/METHOD=ENTER agecat_2534 agecat_3549 agecat_5064 agecat_6579.

income Household income in thousands of dollars (Min=9; Max=1073)
agecat_1824 (0=No; 1=Yes)
agecat_2534 (0=No; 1=Yes)
agecat_3549 (0=No; 1=Yes)
agecat_5064 (0=No; 1=Yes)
agecat_6579 (0=No; 1=Yes)
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Output/Step 1

The first step is to look at the table called Model Summary. Here you focus on the column for

Adjusted R Square, which reflects the so-called “R2”. The value here reflects how much of the

variation in the dependent variable (income) that is explained by the dummies of the

independent variable (agecat). Just move the decimal two places to the right to be able to

interpret the R2 value as percentages. Accordingly, we see that the dummies of agecat explain

12.1 % of the variation in household income.

Model Summary

Adjusted R Std. Error of
Madel F R Square Square the Estimate
1 3497 122 121 5206483

a. Predictors: (Constant), agecat_G579, agecat_2534,

agecat_5064, agecat_3544
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Output/Step 2

The second step is to look at the table called Coefficients. Start focusing on the column called B;
here we have the B coefficients. The dummy agecat_1824 was chosen as the reference category
and is thus not included. The other B coefficients should be compared to that category. The B
coefficient for agecat_2534 is 14.972 which means that individuals aged 25-34 have (on average)
almost 15000 dollars more in household income compared to individuals in ages 18 to 24. The B
coefficient for agecat 3549 is 35.909, meaning that individuals aged 35-49 have (on average)
almost 36000 dollars more in household income compared to individuals in ages 18 to 24. The B
coefficient for agecat 5064 is 60.033, which suggests that individuals aged 50-64 have (on
average) roughly 60000 dollars more in household income compared to individuals in ages 18 to
24. Finally, the B coefficient for agecat 6579 is 27.094, which suggests that individuals aged 65-
79 have (on average) roughly 27000 dollars more in household income compared to individuals

in ages 18 to 24.

The column called Sig. shows the p-value for each category of agecat. All of them are 0.000,
which means that the differences between the reference category and each of the remaining
categories are statistically significant (at the 0.1 % level). Then we look at the part of the table
called 95 % Confidence Interval for B. This gives us the lower confidence limits (Lower Bound)
and the upper confidence limits (Upper Bound). In the present example, the intervals do not
include the null value (which is always x=0 in linear regression) and, thus, the results are

statistically significant (at the 5 % level).

Coefficients”

Standardized
Unstandardized Coefficients Coefiicients 95 0% Confidence Interval for B
Madeal B Std. Error Beta 1 Sig. Lower Bound | Upper Bound
1 (Constant) 23,355 2,086 11,196 ,000 18,265 27,444
agecat_2534 14,872 2723 103 5,499 ,aon 0634 20,310
agecat_3549 35,808 2,555 280 14,054 ,000 30,900 40,918
agecat_5064 60,033 2,570 462 23,357 000 54,994 65,072
agecat_6579 27,094 2635 148 10,281 000 21,828 32,261

a. Dependent Variahle: Household income in thousands
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13.2 Multiple linear regression

Number of variables One dependent (y)

At least two independent (x)

Scale of variable(s) Dependent: continuous (ratio/interval) and normally distributed
Independent: categorical (nominal/ordinal) and/or continuous

(ratio/interval)
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Multiple linear regression: Function

1. Go to the Menu bar, choose Analyze\Regression\Linear.

2. A new window called Linear Regression will open.

3. In the left box, all your variables are displayed. You choose the variable you want
to have as your dependent variable (y) and transfer it to the box called
Dependent.

4. Then you choose the variables you want as your independent variables (x) and

transfer them to the box called Independent(s).

Click on Statistics.

Tick the box for Confidence Intervals.

Click on Continue.

©® N o wu

Click on OK to get the results in your Output window.
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Multiple linear regression: Syntax

REGRESSION
JMISSING LISTWISE
/STATISTICS COEFF OUTS CI(95) R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT DEPVAR
/METHOD=ENTER INDEPVARS.

DEPVAR Name of the dependent variable.

INDEPVARS List the names of the independent variables.
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Multiple linear regression

Example

Suppose we are interested to see if the number of furry pets (y) is related to having small
children (x), residential area (x), and income (x). The number of furry pets is measured as the
number of cats, dogs or other furry animals living in the household, and ranges between 0 and
10. Having small children is measured as either 0=No or 1=Yes. Residential area has the values
1=Metropolitan, 2=Smaller city, and 3=Rural. Income is measured as the yearly household

income from salary in thousands of SEK (ranges between 100 and 700 SEK).

When we do our linear regression, we can include the variables “having children” and
“income” as they are, since the first is binary and the other is continuous. The remaining
variable - residential area - is categorical with more than two values and therefore dummies
must be used. We create one dummy for each category of “residential area”. The first dummy

(metropolitan) is chosen as the reference category and is thus excluded from the analysis.

In the regression analysis, we get a B coefficient for having small children that is 0.51. That
means that the number of furry pets is higher among those who have small children. This
association is adjusted for residential area and income. With regards to residential area, we get
a B coefficient for “smaller city” of 2.02 and the B coefficient for “rural” is 4.99. That suggests,
firstly, that the number of furry pets is higher (about two more pets, on average) among
individuals living in smaller cities compared to metropolitan areas. Secondly, the number of
furry pets is much higher (almost five more pets, on average) among individuals living in rural
areas compared to metropolitan areas. This association is adjusted for having small children
and income. Finally, the B coefficient for income is -0.1. This suggests that for every one-unit
increase in income (i.e. for every additional one thousand SEK), the number of furry pets

decrease by 0.1. This association is adjusted for having small children and residential area.
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Multiple linear regression: Example

(Data: SPSS_datal.sav)

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS CI(95) R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT hourstv
/METHOD=ENTER income marital agecat 2534 agecat_3549 agecat_5064 agecat_6579.

hourstv Hours spent watching TV last week (Min=0; Max=36)

income Household income in thousands of dollars (Min=9; Max=1073)
marital Marital status (0=Unmarried; 1=Married)

agecat_1824 (0=No; 1=Yes) Reference category

agecat_2534 (0=No; 1=Yes)

agecat_3549 (0=No; 1=Yes)

agecat_5064 (0=No; 1=Yes)

agecat_6579 (0=No; 1=Yes)
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Output/Step 1

The first step is to look at the table called Model Summary. Here you focus on the column for

Adjusted R Square, which reflects the so-called “R2”. The value here reflects how much of the

variation in the dependent variable (hourstv) that is explained by the independent variables

(income, marital, dummies of agecat). Just move the decimal two places to the right to be able to

interpret the R2 value as percentages. Accordingly, we see that the independent variables

explain 0.8 % of the variation in hours spent watching TV.

Model Summary

Adjusted R Std. Erraor of
Madel R R Square Square the Estimate
1 086% o0& oos 51583

a. Predictors: (Constant), agecat_6579, Marital status,
Household income inthousands of dollars, agecat_2534,

agecat_3549 agecat_h064
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Output/Step 2

The second step is to look at the table called Coefficients. Start focusing on the column called B;
here we have the B coefficients. With regard to income, we can see that the B coefficient is 0.005.
This means that for every one-unit increase in household income (i.e. every additional one
thousands of dollars in household income), the number of hours watching TV last week
increases by 0.005. The column called Sig. shows the p-value for income; it is 0.000, which
means that the association between income and hourstv is statistically significant (at the 0.1 %
level). Then we look at the part of the table called 95 % Confidence Interval for B. This gives us
the lower confidence limits (Lower Bound) and the upper confidence limits (Upper Bound). For
income, the interval does not include the null value (which is always x=0 in linear regression)
and, thus, the results are statistically significant (at the 5 % level). The conclusion here is that
there is a statistically significant association between income and TV watching - where higher

income is related to more TV watching - also when marital status and age is adjusted for.

The B coefficient for marital status is 0.391, suggesting that married individuals watched more
TV compared to unmarried individuals (we can conclude this since married have the higher
value in the variable and hence the unmarried are automatically chosen as the reference
category). The column called Sig. shows the p-value for marital status; it is 0.007, which means
that the association between marital and hourstv is statistically significant (at the 1 % level).
Then we look at the part of the table called 95 % Confidence Interval for B. This gives us the
lower confidence limits (Lower Bound) and the upper confidence limits (Upper Bound). For
marital status, the interval does not include the null value (which is always x=0 in linear
regression) and, thus, the results are statistically significant (at the 5 % level). The conclusion
here is that there is a statistically significant association between marital status and TV watching
- where married individuals watch more TV than unmarried individuals - also when income and

age is adjusted for.

Then we have one B coefficient for each of the dummies of age. The dummy agecat 1824 was
chosen as the reference category and is thus not included. The other B coefficients should be
compared to that category. The B coefficient for agecat 2534 is 0.889 which means that
individuals aged 25-34 watch more TV compared to those aged 18-24. The B coefficient for
agecat_3549 is 0.532 which means that individuals aged 35-49 watch more TV compared to
those aged 18-24. The B coefficient for agecat 5064 is 0.136 which means that individuals aged
50-64 watch more TV compared to those aged 18-24. Finally, the B coefficient for agecat 6579 is
-0.169 which means that individuals aged 65-79 watch less TV compared to those aged 18-24.
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The column called Sig. shows the p-value for each category of agecat. The two first dummies
have p-values of 0.001 and 0.039, which means that they are statistically significantly different
(at the 0.1 % level and the 5 % level respectively) from the reference category. The two latter
dummies have p-values greater than 0.05, which that there are no statistically significant
differences from the reference category. Then we look at the part of the table called 95 %
Confidence Interval for B. This gives us the lower confidence limits (Lower Bound) and the
upper confidence limits (Upper Bound). For agecat, the intervals do not include the null value
(which is always x=0 in linear regression) for the first two dummies and, thus, these results are
statistically significant. For the other two dummies, the intervals do include the null value and,
thus, these results are not statistically significant. The conclusion here is that there is a partly
statistically significant association between age and TV watching: the individuals watching the
most TV are those in ages 25-34, but also those in ages 35-49 watch a lot of TV. TV watching is
less common among those below the age of 25 as well as 50 years or older. These results are

adjusted for income and marital status.

Coefficients®
Standardized

Unstandardized Coefficients Coefficients 95 0% Confidence Interval for B
Model B Std. Error Beta t Sig. Lower Bound Upper Bound
1 (Constant) 18,888 220 85905 ,000 18,457 18,3149
Household income in 005 001 0585 3634 000 002 Joo0a

thousands of dollars
Marital status 391 146 038 2,680 007 108 B7T
agecat_2534 Bag 270 J0G6 3,290 ,001 359 1,419
agecat_3549 532 258 044 2,062 039 026 1,037
agecat_5064 136 268 011 507 612 -,380 661
agecat_6579 - 168 264 -013 - G642 821 - GB6 348

a. Dependent Variable: Hours spentwatching TV last week
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13.3 Model diagnostics

First, it should be emphasised that a regression model generally has the aim to predict or
“forecast” the value of y, depending on the values of the x-variables. Linear regression is
concerned with finding the best-fitting straight line through the data points. Imagine that we
make a scatterplot of two continuous variables; then a line is chosen so that it comes as close to

all of the data points as possible. The best-fitting line is called a regression line.

The regression line has an “intercept” (or “constant”) and a “slope”. The intercept is where the
regression line strikes the y-axis when the value of the x-variable(s) is 0. The slope is basically

the steepness of the line; i.e. how much y changes when x increases.

The regression model thus gives us predicted values of y across the values of the x-variable(s).
Of course, there is generally a difference between what the model predicts and what the
individuals’ actual (observed) values are. This difference is called “residual” and is calculated as

the observed value minus the predicted value.

Often, “error” is used instead of “residual”, and although these terms are closely related, they are
not the exact same thing: an error is the difference between the observed value and the
population mean (and the population mean is typically unobservable), whereas a residual is the
difference between the observed value and the sample mean (and the sample mean is

observable).
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Assumptions

Before we can trust the results from our linear regression analysis to be valid, we need to assess

our model to check that it does not violate any of the fundamental assumptions of linear

regression.

Checklist

No outliers

Outliers are individuals who do not follow the overall pattern of

data.
Homoscedasticity The variance around the regression line should be constant across
all values of the x-variable(s).
Normality The residuals for our x-variables should be normally distributed.
Linearity The effect of x on y should be linear.

No multicollinearity

Multicollinearity may occur when two or more x-variables that are
included simultaneously in the model are strongly correlated with

each another.
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Types of diagnostics

Model diagnostics

1. Scatterplot

Check for linearity and outliers.

Applies to continuous (ratio/interval) x-variables.

2. Histogram

Check for normality.
The histogram is based on the residuals, not the actual values.

Applies to both simple and multiple linear regression analysis.

3. Residual plot

Check for linearity and homoscedasticity.
The plot is based on the residuals, not the actual values.

Applies to both simple and multiple linear regression analysis.

4. Normal probability

Check for normality.

plot Applies to both simple and multiple linear regression analysis.
a. P-Pplot Check for normality, based on actual values (better at detecting
anomalies in the middle of the distribution).
b. Q-Qplot Check for normality, based on cumulative probabilites (better at

detecting anomalies at the tails of the distribution).

5. Correlation analysis

Check for multicollinearity.
Applies to continuous (ratio/interval) and some ordinal x-

variables.

Scatterplots are described elsewhere in this guide (see Section 4.7) and so is correlation analysis

(Chapter 9). The remainder of the current section will be divided into two parts: the first will

deal with diagnostics in terms of histograms, residual plots and P-P plots, whereas the second

deals with Q-Q plots.
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Histograms, residual plots and P-P plots: Function

1. Go to the Menu bar, choose Analyze\Regression\Linear.

2. Anew window called Linear Regression will open.

3. In the left box, all your variables are displayed. You choose the variable you want
to have as your dependent variable (y) and transfer it to the box called
Dependent.

4. Then you choose the variables you want as your independent variables (x) and
transfer them to the box called Independent(s).

5. Click on Statistics.

6. Tick the box for Confidence Intervals.

7. Click on Plots.

8. Intheleft box, click on *ZRESID and transfer it to the box called Y:

9. Intheleft box, click on *ZPRED and transfer it to the box called X:

10. Tick the boxes called Histogram and Normal probability plot.

11. Click on Continue.

12. Click on OK to get the results in your Output window.
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Histograms, residual plots and P-P plots: Syntax

REGRESSION
JMISSING LISTWISE
/STATISTICS COEFF OUTS CI(95) R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT DEPVAR
/METHOD=ENTER INDEPVARS
/SCATTERPLOT=(*ZRESID ,*ZPRED)
/RESIDUALS HISTOGRAM(ZRESID) NORMPROB(ZRESID).

DEPVAR Name of the dependent variable.
INDEPVAR List the names of the independent variables.
/SCATTERPLOT= Generates a residual plot.

(*ZRESID ,*ZPRED)

/RESIDUALS Generates a histogram and a P-P plot.
HISTOGRAM

(ZRESID)

NORMPROB(ZRESID)
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Histograms, residual plots and P-P plots: Example

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS CI(95) R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT spoused?2sel
/METHOD=ENTER gender ed hometype_singlefam hometype_townhouse
hometype_mobilehome
/SCATTERPLOT=(*ZRESID ,*ZPRED)
/RESIDUALS HISTOGRAM(ZRESID) NORMPROB(ZRESID).

spoused?2sel Spouse’s years of education, only for those with a spouse (Min=0;
Max=24)

gender Gender (0=Man; 1=Woman)

hometype_singlefam Building type: single family (0=No; 1=Yes)

hometype_multiplefam Building type: multiple family (0=No; 1=Yes) Reference category
hometype_townhouse Building type: multiple family (0=No; 1=Yes)
hometype_mobilehome Building type: mobile home (0=No; 1=Yes)
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Output/Step 1
The first step is to look at the graph called Histogram. It shows how the residuals are distributed.

They should follow the normal curve on the diagram. In the present example, this histogram

looks rather normally distributed.

Histogram
Dependent Variable: Spouse's years of education - only for those with spouse
Mean = 8 45E-17
2004 Stel. Dev. = 0,999
M=244
150 =
5 \
E 11 -
5 AN
g il
L 100 ]
= Y
a0
0 T T T T

-4 -2 0 2 4
Regression Standardized Residual
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Output/Step 2

The second step is to look at the graph called Normal P-P Plot of Regression Standardized
Residual. The distribution should follow a diagonal line across the plot if the residuals are
normally distributed. The P-P plot below looks good; the residuals are normally distributed

which was already indicated from the histogram.

Normal P-P Plot of Regression Standardized Residual

Dependent Variable: Spouse’s years of education - only for those with spouse
10

Expected Cum Prob

0.0 T T T
0o 02 04 0 0g 1,0

Observed Cum Prob
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Output/Step 3

The third step is to look at the graph called Scatterplot. The residuals should be equally
distributed around 0. Systematic patterns usually indicate some problem with the model, like
curve linearity or heteroscedasticity. Problematic patterns can look like cones or curves where
the variation in the residuals is not constant over the whole range of values. For example, a cone-
shaped form on the residual plot has low variation in the residuals on low values, and high

variation in the residuals on high values, or reversed.

Scatterplot
Dependent Variable: Spouse’'s years of education - only for those with spouse
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Q-Q plots: Function

Step 1

1. Go to the Menu bar, choose Analyze\Regression\Linear.

2. Anew window called Linear Regression will open.

3. In the left box, all your variables are displayed. You choose the variable you want
to have as your dependent variable (y) and transfer it to the box called Dependent.

4. Then you choose the variables you want as your independent variables (x) and

transfer them to the box called Independent(s).

Click on Statistics.

Tick the box for Confidence Intervals.

Click on Save.

Under Residuals, tick the box called Standardized.

o o N o u

Click on Continue.
10. Click on OK to generate a new variable that consists of the standardized residuals

from the regression analysis.

Step 2

1. Go to the Menu bar, choose Analyze\Descriptive Statistics\Q-Q Plots.
2. In the left box, highlight the new variable you just generated, and transfer it to the
box called Variables:

3. Click on OK.
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Q-Q plots: Syntax

Part1

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS CI(95) R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT DEPVAR
/METHOD=ENTER INDEPVARS
/SAVE ZRESID.

Part 2

PPLOT
/VARIABLES=VARNAME
/NOLOG
/NOSTANDARDIZE
JTYPE=Q-Q
/FRACTION=BLOM
JTIES=MEAN
/DIST=NORMAL.

DEPVAR Name of the dependent variable.

INDEPVAR List the names of the independent variables.

/SAVE ZRESID Saves the standardized residuals.

VARNAME Name of the variable containing the standardized residuals.
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Q-Q plots: Example

Part1

REGRESSION

/MISSING LISTWISE

/STATISTICS COEFF OUTS CI(95) R ANOVA

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT spoused?2sel

/METHOD=ENTER gender ed hometype_singlefam hometype_townhouse
hometype_mobilehome

/SAVE ZRESID.
Part 2

PPLOT
/VARIABLES=7RE 1
/NOLOG
/NOSTANDARDIZE
JTYPE=Q-Q
/FRACTION=BLOM
JTIES=MEAN
/DIST=NORMAL.

spousedZsel Spouse’s years of education, only for those with a spouse (Min=0;
Max=24)

gender Gender (0=Man; 1=Woman)

hometype_singlefam Building type: single family (0=No; 1=Yes)

hometype_multiplefam Building type: multiple family (0=No; 1=Yes) Reference category
hometype_townhouse Building type: multiple family (0=No; 1=Yes)
hometype_mobilehome Building type: mobile home (0=No; 1=Yes)
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Output

Look at the graph called Normal Q-Q Plot of Standardized Residual. If the observed values and
the expected values coincide completely, the dots would follow the diagonal line and the
variable tested would then be completely normally distributed. This is however very rare
and some deviation is always present, but the principle is that the closer to the line the dots
are the more normally distributed the variable is. For example the diagram above show a
normally distributed variable, deviation at the ends is almost inevitable. It is more
problematic if the dots are distributed in a wider s-shaped pattern and deviate from the

diagonal over the whole range of values.

Normal Q-Q Plot of Standardized Residual

Expected Normal Value
T

-4 T T
-4 -2 0 2 4

Observed Value
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14. LOGISTIC REGRESSION

14.1 Simple logistic regression

14.2 Multiple logistic regression

14.3 Model diagnostics
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Introduction

Logistic regression is used when y is categorical with only two outcomes, i.e.
dichotomous/binary (see section 2.2). If you have only one x, it is called “simple” logistic
regression, and if you have more than one x, it is called “multiple” logistic regression. Regardless
of whether you are doing a simple or a multiple regression, the x-variables can be categorical

(nominal/ordinal) and/or continuous (ratio/interval).

Key information from logistic regression

1. Direction

Negative 0dds ratio below 1

Positive 0Odds ratio above 1

2. Effect size

0dds ratio The odds of the outcome being a case divided by the odds that

the outcome is a non-case, for every one-unit increase in x

3. Statistical significance

P-value p<0.05 Statistically significant at the 5 % level
p<0.01 Statistically significant at the 1 % level
p<0.001 Statistically significant at the 0.1 % level

95 9% Confidence intervals Interval includes 1:
Statistically significant at the 5 % level
Interval does not include 1:

Statistically non-significant at the 5 % level
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Odds ratio (OR)

A logistic regression is thus based on the fact that the outcome has only two possible values: 0 or
1. Often, 1 is used to denote a “case” whereas 0 is then a “non-case”. What a “case” or “non-case”

means depends on how the hypothesis is formulated.

Example 1a

We want to investigate the association between educational attainment (x) and employment
(v). Our hypothesis is that educational attainment is positively associated with employment
(i.e. higher educational attainment = more likely to be employed).

Coding of employment: 0=Unemployment (non-case); 1=Employment (case)

Example 1b

We want to investigate the association between educational attainment (x) and
unemployment (y). Our hypothesis is that educational attainment is negatively associated with
unemployment (i.e. higher educational attainment = less likely to be unemployed).

Coding of employment: 0=Employment (non-case); 1=Unemployment (case)

Logistic regression is used to predict the “odds” of being a “case” based on the values of the x-
variable(s). Just as for linear regression analysis, we get a coefficient (log odds) that shows the
effect of x on y. However, because logistic regression is based on other assumptions that linear
regression, we cannot interpret these coefficients very easily. Instead we focus on something
called the “odds ratio” (“OR”). We can get the odds ratio by taking the “exponent” of the

coefficient: “exp(B)”.

The odds ratio is interpreted in the following way: “for every one-unit increase in x, y
increases/decreases by [the odds ratio]”. Accordingly, if you get a negative OR (below 1), you
say: “for every one-unit increase in X, y decreases by [the OR]”, and if you get a positive OR
(above 1), you say: “for every one-unit increase in x, y increases by [the OR]”. Unlike linear
regression, where the null value (i.e. value that denotes no difference) is 0, the null value for
logistic regression is 1. Also note that an OR can never be negative - it can range between 0 and
infinity. What the OR actually stands for - and whether we can say that an effect is small or big -

depends on the values of x and y.
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Is the odds ratio the same as risk, probability, chance or likelihood?

The simple answer is no. These terms are not the same (but the more uncommon the outcome is,
the closer odds ratios and risks become). Still, it is very common that odds ratios are interpreted
in terms of risks, probabilities, chances or likelihoods. For example, suppose we examine the
association between unemployment (0=Employed; 1=Unemployed) and alcohol abuse (0=No;
1=Yes) and we get an OR for unemployment that is 2.01. It is very tempting to interpret this as
the unemployed having twice the risk of alcohol abuse compared to the employed. Or, if we
investigate the association between school marks (ranges between 10 and 20, higher
score=better marks) and continuation to university education (0=No; 1=Yes), and get an OR for
school marks that is 1.20, many would say that the chance of university education increases by

20 % for every one-unit increase of school marks.

To avoid all of these problems, here is one suggestion: if you do not have to give any exact
numbers, then it is all right to say that some individuals have higher or lower odds/odds
ratio/risk/probability compared to other individuals. However, if you want to give exact

numbers to exemplify, always use the actual OR.

Some examples

The results suggest that women (OR=0.84) are less likely than men to subscribe to a daily
newspaper.

Based on logistic regression analysis, it may be concluded that individuals with more
behavioural problems in childhood have a greater risk of drug abuse in adulthood (OR=1.49).
There is a negative association between educational attainment and number of children: the
higher the educational attainment, the lower the number of children (OR=0.90).

Individuals living in urban areas (OR=0.33) are less likely compared to those living in rural

areas to own a horse.

P-values and confidence intervals

In logistic regression analysis you can of course get information about statistical significance, in
terms of both p-values and confidence intervals. The p-values and the confidence intervals will

give you partly different information, but: they are not contradictory. If the p-value is below
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0.05, the 95 % confidence interval will not include 1 (statistical significance at the 5 % level),
and if the p-value is above 0.05, the 95 % confidence interval will include 1 (statistical non-

significance at the 5 % level).

Note that when you look at the p-value, you can rather easily distinguish between the
significance levels (i.e. you can directly say whether you have statistical significance at the 5 %
level, the 1 % level, or the 0.1 % level). When it comes to confidence intervals, SPSS will by
default choose 95 % level confidence intervals (i.e. statistical significance at the 5 % level). For
some analyses, it is however possible to change the confidence level for the intervals. For

example, you may instruct SPSS to show 99 % confidence intervals instead.

R-Squared

In contrast to linear regression, “R-Squared” or “R2” is not very usable (again, because of the
assumptions behind logistic regression). You will, however, get a value for the so-called

“Nagelkerke R Square” which is similar to the R-squared.

Simple versus multiple regression models

The difference between simple and multiple regression models, is that in a multiple regression
each x-variable’s effect on y is estimated while taking into account the other x-variables’ effects
on y. We then say that these other x-variables are “held constant”, or “adjusted for”, or
“controlled for”. Because of this, multiple regression analysis is a way of dealing with the issue of

“confounding” variables, and to some extent also “mediating” variables (see Section 11.2).

It is highly advisable to run a simple logistic regression for each of the x-variables before
including them in a multiple regression. Otherwise, you will not have anything to compare the
adjusted odds ratios with (i.e. what happened to the OR when other x-variables were included in
the analysis). Including multiple x-variables in the same model usually (but not always) means
that the associations are reduced in strength - which would of course be expected if the x-

variables overlapped in their effect on y.
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Define your analytical sample

Before you begin, make sure that you have defined your analytical sample correctly (see Section

12.6).
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14.1 Simple logistic regression

Number of variables One dependent (y)

One independent (x)

Scale of variable(s) Dependent: binary
Independent: categorical (nominal/ordinal) or continuous

(ratio/interval)

240



Simple logistic regression: Function

1. Go to the Menu bar, choose Analyze\Regression\Binary Logistic.

2. A new window called Logistic Regression will open.

3. In the left box, all your variables are displayed. You choose the variable you want
to have as your dependent variable (y) and transfer it to the box called
Dependent.

4. Then you choose the variable you want as your independent variable (x) and

transfer it to the box called Covariates.

Click on Options.

Tick the box for CI for exp(B).

Click on Continue.

©® N o wu

Click on OK to get the results in your Output window.
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Simple logistic regression: Syntax

LOGISTIC REGRESSION VARIABLES DEPVAR
/METHOD=ENTER INDEPVAR
/PRINT=CI(95)
JCRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

DEPVAR Name of the dependent variable.

INDEPVAR Name of the independent variable.
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Simple logistic regression with a continuous x

Example 1

Suppose we want to examine the association between unemployment days (x) and mortality
(v) by means of a simple logistic regression analysis. Unemployment days are measured as the
total number of days in unemployment during a year, and ranges from 0 to 365. Mortality has
the values 0=Alive and 1=Dead. Let us say that we get an OR that is 1.67. That would mean that
we have a positive association: the higher the number of unemployment days, the higher the

risk of dying.

Example 2

In another example, we may examine the association between intelligence scores (x) and drug
use (y). Intelligence scores are measured by a series of tests that render various amounts of
points, and ranges between 20 and 160 points. Drug use has the values 0=No and 1=Yes. Here,
we get an OR of 0.91. We can thus conclude that the risk of using drugs decrease for every one-

unit increase in intelligence scores.
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Simple logistic regression with a continuous x: Example

(Data: SPSS_datal.sav)

LOGISTIC REGRESSION VARIABLES active
/METHOD=ENTER age
JPRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

active Active lifestyle (0=No; 1=Yes)
age Age in years (Min=18; Max=79)
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Output

Look at the table called Variables in the Equation. The column called Exp(B) shows the odds
ratio (OR) for the variable age. The OR is 0.972, which means that we have a negative association
between age and active. In other words, for every one-unit increase in age (i.e. one additional

lived year), the likelihood of having an active lifestyle decreases.

The column called Sig. shows the p-value. Here, the p-value is 0.000 which means that the
association between age and active is statistically significant (at the 0.1 % level). The part of the
table called 95 % C.I. for EXP(B) gives us the lower confidence limits (Lower) and the upper
confidence limits (Upper). The interval does not include the null value (which is always x=1 in

logistic regression) and, thus, the results are statistically significant (at the 5 % level).

Variables in the Equation

95% C.Lfor EXP(E)

B SE. Wald df Sig. Exp(B) Lower Upper
Step1®  age - 029 002 | 284,284 1 ,oon a7z BEa 475
Constant 1,202 084 | 2058740 1 ,oon 3,326

a. Variahle(s) enterad on step 1: age.

245



Simple logistic regression with a binary x

Example 1

Suppose we want to examine the association between gender (x) and alcohol abuse (y) by
means of a simple logistic regression analysis. Gender has the values 0=Man and 1=Woman,
whereas alcohol abuse has the values 0=No and 1=Yes. Now, we get an OR of 0.66. This would

mean that women are less likely to abuse alcohol compared to men.

Example 2

Here we want to examine the association between having small children (x) and owning a pet
(y) by means of a simple logistic regression analysis. Having small children is measured as
either 0=No or 1=Yes. Owning a pet has the values 0=No and 1=Yes. Let us say that we get an
OR that is 1.49. We can hereby conclude that it is more common to own a pet in families with

small children compared to families without small children.

246



Simple logistic regression with a binary x: Example

(Data: SPSS_datal.sav)

LOGISTIC REGRESSION VARIABLES marital
/METHOD=ENTER active
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

marital Marital status (0=Unmarried; 1=Married)

active Active lifestyle (0=No; 1=Yes)
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Output

Look at the table called Variables in the Equation. The column called Exp(B) shows the odds

ratio (OR) for the variable active. The OR is 0.987, which means that we have a negative

association between active and marital. In other words, those who have an active lifestyle are

less likely to be married compared to those who do not have an active lifestyle.

The column called Sig. shows the p-value. Here, the p-value is 0.823 which means that the

association between active and marital is not statistically significant. The part of the table called

95 % C.I. for EXP(B) gives us the lower confidence limits (Lower) and the upper confidence

limits (Upper). The interval includes the null value (which is always x=1 in logistic regression)

and, thus, the results are not statistically significant.

Variables in the Equation

85% C.Lfor EXP(B)

B SE. Wald df Sig. Exp(B) Lower Upper
Step1?®  active - 013 087 050 1 823 a87 B84 1,103
Constant - 041 034 1,135 1 287 960

a. Variable(s) entered on step 1: active.
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Simple logistic regression with a categorical x (dummies)

Example 1

We want to investigate the association between educational attainment (x) and mortality (y)
by means of a simple logistic regression analysis. Educational attainment has the values:
1=Compulsory education, 2=Upper secondary education, and 3=University education.
Mortality has the values 0=No and 1=Yes. Since our x-variable is categorical with more than
two categories, we have to create dummies (one 0/1 coded variable for each category). We
choose those with compulsory education as our reference category, meaning that this dummy
will not be included in the analysis. We will thus get one odds ratio for upper secondary
education and one odds ratio for university education. Each of these should be compared to
the reference category. Let us say that we get an OR for upper secondary education that is 0.82
and we get an OR for university education that is 0.69. We can thus conclude - based on the
direction of the estimates - that higher educational attainment is associated with a lower

mortality risk.

Example 2

Suppose we are interested in the association between family type (x) and children’s average
school marks (y). Family type has three categories: 1=Two-parent household, 2=]Joint custody,
and 3=Single-parent household. Children’s average school marks are categorised into 0=Above
average and 1=Below average. Since our x-variable is categorical with more than two
categories, we have to create dummies (one 0/1 coded variable for each category). We choose
children living in a two-parent household as our reference category, meaning that this dummy
will not be included in the analysis. We will thus get one odds ratio for joint custody and one
odds ratio for single-parent household. Each of these should be compared to the reference
category. The analysis results in an OR of 1.02 for joint custody and an OR of 1.55 for single-
parent household. That would mean that children living in family types other than two-parent

households are more likely to have school marks below average.
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Simple logistic regression with a categorical x (dummies): Example

(Data: SPSS_datal.sav)

LOGISTIC REGRESSION VARIABLES ownpc
/METHOD=ENTER edcat_no edcat_somecoll edcat_colldeg edcat_postgrad
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

ownpc Owns computer (0=No; 1=Yes)

edcat_no Did not complete high school (0=No; 1=Yes)
edcat_highsc High school degree (0=No; 1=Yes) Reference group
edcat_somecoll Some college (0=No; 1=Yes)

edcat_colldeg College degree (0=No; 1=Yes)

edcat_postgrad Post-undergraduate degree (0=No; 1=Yes)
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Output

Look at the table called Variables in the Equation. The column called Exp(B) shows the odds
ratios (OR) for the dummies of the variable edcat. The OR is 0.380 for the dummy edcat no (Did
not complete high school), 2.253 for edcat somecoll (Some college), 4.864 for edcat colldeg
(College degree), and 8.756 for edcat postgrad (Post-undergraduate degree). This means that
those who do not complete high school are less likely to own a computer compared to those with
a high school degree, whereas those who have some college education or more are more likely to
own a computer compared to those with a high school degree. We can thus see a clear positive
association between edcat and ownpc: the higher the educational attainment, the higher the

likelihood of owning a computer.

The column called Sig. shows the p-value. Here, the p-values are 0.000 which means that the
association between edcat and ownpc is statistically significant (at the 0.1 % level). The part of
the table called 95 % C.I. for EXP(B) gives us the lower confidence limits (Lower) and the upper
confidence limits (Upper). The intervals do not include the null value (which is always x=1 in

logistic regression) and, thus, the results are statistically significant (at the 5 % level).

Variables in the Equation

95% C.Lfor EXP(B)

B SE. ‘Wald df Sig. Exp(B) Lower Upper
Step1®  edcat_no - 968 086 | 126,260 1 .aon 380 321 450
edcat_somecaoll 812 088 86,054 1 .aon 2,253 1,887 2674
edcat_colldeg 1,582 089 | 254 469 1 .aoa 4 864 4004 5807
edcat_postgrad 24170 185 | 124347 1 .aon 8,756 545980 12,821

Constant 185 051 14,853 1 .aon 1,216

a. Wariable(s) entered on step 1: edcat_no, edcat_somecoll, edeat_colldeg, edcat_postgrad.
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14.2 Multiple logistic regression

Number of variables One dependent (y)

At least two independent (x)

Scale of variable(s) Dependent: binary

Independent: categorical (nominal/ordinal) and/or continuous

(ratio/interval)
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Multiple logistic regression: Function

1. Go to the Menu bar, choose Analyze\Regression\Binary Logistic.

2. A new window called Logistic Regression will open.

3. In the left box, all your variables are displayed. You choose the variable you want
to have as your dependent variable (y) and transfer it to the box called
Dependent.

4. Then you choose the variables you want as your independent variables (x) and

transfer them to the box called Covariates.

Click on Options.

Tick the box for CI for exp(B).

Click on Continue.

©® N o wu

Click on OK to get the results in your Output window.
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Multiple logistic regression: Syntax

LOGISTIC REGRESSION VARIABLES DEPVAR
/METHOD=ENTER INDEPVARS
/PRINT=CI(95)
JCRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

DEPVAR Name of the dependent variable.

INDEPVARS List the names of the independent variables.
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Multiple logistic regression

Example

Suppose we are interested to see if having a pet (y) is related to having small children (x),
residential area (x), and income (x). Having a pet has the values 0=No and 1=Yes. Having small
children is measured as either 0=No or 1=Yes. Residential area has the values 1=Metropolitan,
2=Smaller city, and 3=Rural. Income is measured as the yearly household income from salary

in thousands of SEK (ranges between 100 and 700 SEK).

When we do our logistic regression, we can include the variables “having children” and
“income” as they are, since the first is binary and the other is continuous. The remaining
variable - residential area - is categorical with more than two values and therefore dummies
must be used. We create one dummy for each category of “residential area”. The first dummy

(metropolitan) is chosen as the reference category and is thus excluded from the analysis.

In the regression analysis, we get an OR for having small children that is 1.30. That means that
those who have small children are more likely to also have a pet. This association is adjusted
for residential area and income. With regards to residential area, we get an OR for “smaller
city” of 1.78 and the OR for “rural” is 4.03. This suggests that those who live in a smaller city
are more likely to have a pet, and so are those living in rural areas. These results are adjusted
for having small children and income. Finally, the OR for income is 0.93. This suggests that for
every one-unit increase in income (i.e. for every additional one thousand SEK), the likelihood
of having a small pet decreases. This association is adjusted for having small children and

residential area.
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Multiple logistic regression: Example

(Data: SPSS_datal.sav)

LOGISTIC REGRESSION VARIABLES active
/METHOD=ENTER age marital bfast_oatmeal bfast_cereal
/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

active Active lifestyle (0=No; 1=Yes)

age Age in years (Min=18; Max=79)

marital Marital status (0=Unmarried; 1=Married)

bfast_energy Preferred breakfast: Energy bar (0=No; 1=Yes) Reference group
bfast_oatmeal Preferred breakfast: Oatmeal (0=No; 1=Yes)

bfast_cereal Preferred breakfast: Cereal (0=No; 1=Yes)
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Output

Look at the table called Variables in the Equation. The column called Exp(B) shows the odds
ratios (OR) for the variables. The OR is 0.981 for age. This means that for every one-unit increase
in age (i.e. one additional year of living), the odds of having an active lifestyle decreases. This
association is adjusted for marital and bfast. The OR is 1.153 for marital, meaning that those who
are married are more likely to have an active lifestyle compared to those who are married. This
association is adjusted for age and bfast. With regard to bfast, we have included two dummies in
the model (bfast_energy is the reference category). The OR for bfast oatmeal is 0.349 and the OR
for bfast_cereal is 0.362. This means that those who prefer oatmeal or cereal for breakfast are
less likely to have an active lifestyle compared to those who prefer an energy bar. These results
are adjusted for age and marital. The column called Sig. shows the p-value. Here, the p-value for
age and bfast is 0.000 which means that we have statistically significant associations with active
lifestyle (at the 0.1 % level). The p-value for marital is 0.020, suggesting that also marital status
has a statistically significant association with active lifestyle (at the 5 % level). Remember that
all these association are mutually adjusted. The part of the table called 95 % C.I. for EXP(B) gives
us the lower confidence limits (Lower) and the upper confidence limits (Upper). None of the
intervals include the null value (which is always x=1 in logistic regression) and, thus, the results

are statistically significant (at the 5 % level).

Variables in the Equation

§95% C.I.for EXP(B)
B SE. Wald df Sig. Exp(B) Lower Upper
Step1®  age -,019 0oz 82,675 1 oon 981 a77 985
marital 142 (061 5,453 1 020 1,153 1,023 1,299
bfast_oatmeal -1,062 082 | 131,821 1 oon 349 262 418
bfast_cereal -1,016 074 | 185,880 1 aoa 362 3 418

Constant 1,393 100 | 195228 1 oo 4028

a. Variable(s) entered on step 1: age, marital, bfast_oatmeal, bfast_cereal.
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14.3 Model diagnostics

Goodness of fit

The assumptions behind logistic regression are different from linear regression. For example, we
do not need to assume linearity, homoscedasticity or normality. Multicollinearity should
however be avoided (i.e. strong correlations between the x-variables in multiple logistic
regression - check with correlation analysis; see Chapter 9). Most importantly, the model should
fit the data. There are several tests to determine “goodness of fit” or, put differently, if the
estimated model (i.e. the model with one or more x-variables) predicts the outcome better than
the null model (i.e. a model without any x-variables). Below, some of these tests are discussed:

classification tables, the Hosmer and Lemeshow test and the ROC curve.

Estimate the goodness of fit

Classification tables

The Hosmer and Lemeshow test

ROC curve

Before going into the specific tests, we need to address the issues of “sensitivity” and
“specificity”. By comparing the cases and non-cases predicted by the model with the cases and
non-cases actually present in the outcome, we can draw a conclusion about the proportion of

correctly predicted cases (sensitivity) and the proportion of correctly classified non-cases

(specificity).

Sensitivity and specificity

Estimated model
Non-case Case
Non-case True negative False positive
“Truth”
Case False negative True positive
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Classification tables

A classification table is similar to the table about sensitivity and specificity, only that it is based
on the model that you run, and thus gives you the frequency of true negatives, false positives,
false negatives, and true positives, as well as the overall percentages of cases and non-cases that
are correctly predicted by the estimated model. Note that a classification table is automatically

produced by SPSS and appears in the standard output.
The Hosmer and Lemeshow test

This test is a type of a chi-square test. It indicates the extent to which the estimated model
provides a better fit to the data (i.e. better predictive power) than the null model. The test will
produce a p-value: if the p-value is above 0.05 (statistically non-significant) the estimated model
has adequate fit, and if the p-value is below 0.05 (statistically significant) the estimated more

does not adequately fit the data.
ROC curve

The ROC curve is a graph that shows how well the estimated model predicts cases (sensitivity)
and non-cases (specificity). What we are interested in here is the “area under the curve” (AUC).
The AUC ranges between 0.5 and 1.0. The nearer the AUC is to 1, the better the predictive power.
On the other hand, a value of 0.5 suggests that we may just flip a coin to decide on whether the
outcome is a case or non-case. Here are some commonly used cut-off points when it comes to

AUC:

Area under the curve (AUC)

0.5-0.6 Fail
0.6-0.7 Poor
0.7-0.8 Fair
0.8-0.9 Good
0.9-1.0 Excellent
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Some remarks on model fit

A general comment about model fit: if the main interest was to identify the best model to predict
a certain outcome, that would solely guide which x-variables we put into the analysis. For
example, we would exclude x-variables that do not contribute to the model’s predictive ability.
However, research is often guided by theory and by the interest of examining associations
between variables. If we thus have good theoretical reasons for keeping a certain x-variable or
sticking to a certain model, we should most likely do that (but still, the model should not fit the
data horribly). Model diagnostics will then be a way of showing others the potential problems

with the model we use.
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Classification tables: Function

1. Go to the Menu bar, choose Analyze\Regression\Binary Logistic.

2. A new window called Logistic Regression will open.

3. In the left box, all your variables are displayed. You choose the variable you want
to have as your dependent variable (y) and transfer it to the box called
Dependent.

4. Then you choose the variables you want as your independent variables (x) and

transfer them to the box called Covariates.

Click on Options.

Tick the box for CI for exp(B).

Click on Continue.

©® N o wu

Click on OK to get the results in your Output window.

261



Classification tables: Syntax

LOGISTIC REGRESSION VARIABLES DEPVAR
/METHOD=ENTER INDEPVARS
/PRINT=CI(95)
JCRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

DEPVAR Name of the dependent variable.

INDEPVARS List the names of the independent variables.
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Classification tables: Example

(Data: SPSS_datal.sav)

LOGISTIC REGRESSION VARIABLES active
/METHOD=ENTER age marital bfast_oatmeal bfast_cereal
/PRINT=CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

active Active lifestyle (0=No; 1=Yes)

age Age in years (Min=18; Max=79)

marital Marital status (0=Unmarried; 1=Married)

bfast_energy Preferred breakfast: Energy bar (0=No; 1=Yes) Reference group
bfast_oatmeal Preferred breakfast: Oatmeal (0=No; 1=Yes)

bfast_cereal Preferred breakfast: Cereal (0=No; 1=Yes)
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Output/Step 1

Look at the table called Classification Table (note: not the first but the second one; below Block

1: Method = Enter). The combination No+No (n=2053) contains the true negative, the

combination No+Yes (n=612) contains the false positive, the combination Yes+No (n=1134)

contains the false negative, and the combination Yes+Yes (n=1201) contains the true positive.

The overall percentage of cases and non-cases that is correctly classified by the estimated model

is 65.1 %.
Classification Table®
Predicted
Active lifestyle Percentage
Ohserved Mo Yes Correct
Step 1 Active lifestyle Mo 2083 612 77,0
Yes 1134 1201 51,4
Cverall Percentage 651
a. The cutvalue is 500
Output/Step 2

The next step is to look at the other table called Classification Table (note: not the second but the

first one; below Block 0: Method = Enter). The overall percentage of cases and non-cases that is

correctly classified by the null model is 53.3 %. In other words, the estimated model did a better

job of predicting the outcome than the null model.

Classification Table®®°

Predicted
Active lifestyle Percentage
Observed Mo Yes Correct
Step 0 Active lifestyle Mo 2665 1] 100,0
Ves 2335 0 0
Cverall Percentage 53,3

a. Constantis included inthe model.

h. The cutvalue is 500
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The Hosmer and Lemeshow test: Function

1. Go to the Menu bar, choose Analyze\Regression\Binary Logistic.

2. A new window called Logistic Regression will open.

3. In the left box, all your variables are displayed. You choose the variable you want
to have as your dependent variable (y) and transfer it to the box called
Dependent.

4. Then you choose the variables you want as your independent variables (x) and

transfer them to the box called Covariates.

Click on Options.

Tick the box for CI for exp(B).

Click on Continue.

©® N o wu

Click on OK to get the results in your Output window.
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The Hosmer and Lemeshow test: Syntax

LOGISTIC REGRESSION VARIABLES DEPVAR
/METHOD=ENTER INDEPVARS
/PRINT=GOODFIT CI(95)
JCRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

DEPVAR Name of the dependent variable.
INDEPVARS List the names of the independent variables.
GOODFIT Include the Hosmer-Lemeshow goodness-of-fit test
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The Hosmer and Lemeshow test: Example

(Data: SPSS_datal.sav)

LOGISTIC REGRESSION VARIABLES active
/METHOD=ENTER age marital bfast_oatmeal bfast_cereal
/PRINT=GOODFIT CI(95)

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

active Active lifestyle (0=No; 1=Yes)

age Age in years (Min=18; Max=79)

marital Marital status (O=Unmarried; 1=Married)

bfast_energy Preferred breakfast: Energy bar (0=No; 1=Yes) Reference group
bfast_oatmeal Preferred breakfast: Oatmeal (0=No; 1=Yes)

bfast_cereal Preferred breakfast: Cereal (0=No; 1=Yes)
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Output

Look at the table called Hosmer and Lemeshow test. The column that is labelled Sig. shows the p-
value for the test. If the p-value is above 0.05 (statistically non-significant) the estimated model
has adequate fit, and if the p-value is below 0.05 (statistically significant) the estimated more
does not adequately fit the data. In the current example, we have a p-value of 0.130. This

suggests that the estimated model has adequate fit.

Hosmer and Lemeshow Test

Step Chi-square df Sig.
1 12,510 8 130
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ROC curve: Function

Step 1

1. Go to the Menu bar, choose Analyze\Regression\Binary Logistic.

2. A new window called Logistic Regression will open.

3. In the left box, all your variables are displayed. You choose the variable you want
to have as your dependent variable (y) and transfer it to the box called
Dependent.

4. Then you choose the variables you want as your independent variables (x) and

transfer them to the box called Covariates.

5. Click on Save.

6. Tick the box for Probabilities.

7. Click on Continue.

8. C(lick on OK to generate a new variable that contains the predicted probabilities.
Step 2

1. Go to the Menu bar, choose Analyze\ROC Curve.

2. A new window called ROC Curve will open.

3. In the left box, all your variables are displayed. You choose the variable you just
generated (the one with the predicted probabilities) and transfer it to the box
called Test Variable.

4. Choose your dependent variable (y) and transfer it to the box called State
Variable.

5. In the box called Value of State Variable, write the value that signifies a case
(commonly a non-case has the value 0 and a case has the value 1; then write 1).

6. Tick the box called With diagonal reference line.

7. Click on OK to get the results in your Output window.
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ROC curve: Syntax

Step 1

LOGISTIC REGRESSION VARIABLES DEPVAR
/METHOD=ENTER INDEPVARS
/SAVE=PRED
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Step 2

ROC PRED BY DEPVAR (CASEVALUE)
/PLOT=CURVE(REFERENCE)
JCRITERIA=CUTOFF(INCLUDE) TESTPOS(LARGE) DISTRIBUTION (FREE) CI(95)
/MISSING=EXCLUDE.

DEPVAR Name of the dependent variable.

INDEPVARS List the names of the independent variables.

/SAVE=PRED Generate a new variable containing the predicted probabilities
PRED Name of the variable containing the predicted probabilities
(CASEVALUE) The value of the dependent variable that signifies a “case”
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ROC curve: Example

(Data: SPSS_datal.sav)
Part1

LOGISTIC REGRESSION VARIABLES active
/METHOD=ENTER age marital bfast_oatmeal bfast_cereal
/SAVE=PRED
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

Part 2

ROC PRE_1 BY active (1)
/PLOT=CURVE(REFERENCE)
/CRITERIA=CUTOFF(INCLUDE) TESTPOS(LARGE) DISTRIBUTION(FREE) CI(95)
/MISSING=EXCLUDE.

active Active lifestyle (0=No; 1=Yes)

age Age in years (Min=18; Max=79)

marital Marital status (O=Unmarried; 1=Married)

bfast_energy Preferred breakfast: Energy bar (0=No; 1=Yes) Reference group
bfast_oatmeal Preferred breakfast: Oatmeal (0=No; 1=Yes)

bfast_cereal Preferred breakfast: Cereal (0=No; 1=Yes)

PRE_1 Predicted probabilities
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Output/Step 1
Look at the graph called ROC Curve. The closer to the upper left corner the curve is, the better
the predictions are. If the curve follow the corner perfectly all predictions are correct, if the line

follow the diagonal line we could just as well flip a coin.

ROC Curve
10
0,84
E 0,6-
=
=
w
=
1]
0 4
0,24
oo T T T T
0,0 02 04 05 08 1,0
1 - Specificity

Diagonal segments are produced by ties.
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Output/Step 2

Look at the table called Area Under the Curve. The AUC ranges between 0.5 and 1.0. The nearer
the AUC is to 1, the better the predictive power. On the other hand, a value of 0.5 suggests that
we may just flip a coin to decide on whether the outcome is a case or non-case. A value of 0.681,

as we have here, suggests rather poor predictive power.

Area Under
the Curve

Test Result
Wariahle(s):
Predicted
probatility

Area

681
The test result
variable(s):
Predicted
probatility
has at least
one tie
hetween the
positive actual
state group
and the
negative
actual state
qroup.
Statistics may
he biased.
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15. ORDINAL REGRESSION

15.1 Simple ordinal regression

15.2 Multiple ordinal regression

15.3 Model diagnostics
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Introduction

Ordinal regression is used when y is ordinal (see section 2.2). If you have only one x, it is called

“simple” ordinal regression, and if you have more than one x, it is called “multiple” ordinal

regression. Regardless of whether you are doing a simple or a multiple regression, the x-

variables can be categorical (nominal/ordinal) and/or continuous (ratio/interval).

Key information from ordinal regression

1. Direction

Negative

Odds ratio below 1

Positive

Odds ratio above 1

2. Effect size

0Odds ratio

The odds of the outcome being lower or higher, for every one-

unit increase in x

3. Statistical significance

P-value

p<0.05 Statistically significant at the 5 % level
p<0.01 Statistically significant at the 1 % level
p<0.001 Statistically significant at the 0.1 % level

95 9% Confidence intervals

Interval includes 1:
Statistically significant at the 5 % level
Interval does not include 1:

Statistically non-significant at the 5 % level
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0dds ratios (OR)

An ordinal regression is thus based on the fact that the outcome consists of three or more

categories that are possible to rank (i.e. ordered categories):

Some examples

Educational attainment (1=Compulsory; 2=Upper secondary; 3=University)

School marks (1=Low; 2=Average; 3=High)

Self-rated health (1=Excellent; 2=Good; 3=Fair; 4=Poor)

Statement: “Eurovision Song Contest is entertaining” (1=Strongly agree; 2=Agree; 3=Neither

agree nor disagree; 4=Disagree; 5=Strongly disagree)

Ordinal regression is used to predict the “odds” of having a lower or a higher value for your
dependent variable (y), based on the values of the x-variable(s). Just as for linear regression
analysis, we get a coefficient (log odds) that shows the effect of x on y. However, because ordinal
regression is based on other assumptions that linear regression, we cannot interpret these
coefficients very easily. Instead we focus on something called the “odds ratio” (“OR”). We can get

the odds ratio by taking the “exponent” of the coefficient: “exp(B)”.

The OR is interpreted in the following way: “for every one-unit increase in x, y
increases/decreases by [the OR]”. Accordingly, if you get a negative OR (below 1), you say: “for
every one-unit increase in x, y decreases by [the OR]”, and if you get a positive OR (above 1), you
say: “for every one-unit increase in x, y increases by [the OR]”. Unlike linear regression, where
the null value (i.e. value that denotes no difference) is 0, the null value for ordinal regression is 1.
Also note that an OR can never be negative - it can range between 0 and infinity. What the OR
actually stands for - and whether we can say that an effect is small or big - depends on the

values of x and y.

Is the odds ratio the same as risk, probability, chance or likelihood?

The simple answer is no. These terms are not the same (but the more uncommon the outcome is,
the closer odds ratios and risks become). Still, it is very common that odds ratios are interpreted
in terms of risks, probabilities, chances or likelihoods. For example, suppose we examine the

association between unemployment (0=Employed; 1=Unemployed) and alcohol consumption
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(1=None; 2=Moderate; 3=Excessive) and we get an OR for unemployment that is 1.36. It is very
tempting to interpret this as the unemployed having 36 % higher risk of drinking more alcohol
compared to the employed. Or, if we investigate the association between school marks (ranges
between 10 and 20, higher score=better marks) and educational attainment (1=Low; 2=Medium;
3=High), and get an OR for school marks that is 1.09, many would say that the chance of higher

educational attainment increases by 9 % for every one-unit increase of school marks.

To avoid all of these problems, here is one suggestion: if you do not have to give any exact
numbers, then it is all right to say that some individuals have higher or lower odds/odds
ratio/risk/probability compared to other individuals. However, if you want to give exact

numbers to exemplify, always use the actual OR.

P-values and confidence intervals

In ordinal regression analysis you can of course get information about statistical significance, in
terms of both p-values and confidence intervals. The p-values and the confidence intervals will
give you partly different information, but: they are not contradictory. If the p-value is below
0.05, the 95 % confidence interval will not include 1 (statistical significance at the 5 % level),
and if the p-value is above 0.05, the 95 % confidence interval will include 1 (statistical non-

significance at the 5 % level).

Note that when you look at the p-value, you can rather easily distinguish between the
significance levels (i.e. you can directly say whether you have statistical significance at the 5 %
level, the 1 % level, or the 0.1 % level). When it comes to confidence intervals, SPSS will by
default choose 95 % level confidence intervals (i.e. statistical significance at the 5 % level). For
some analyses, it is however possible to change the confidence level for the intervals. For

example, you may instruct SPSS to show 99 % confidence intervals instead.

R-Squared

In contrast to linear regression, “R-Squared” or “R2” is not very usable (again, because of the
assumptions behind ordinal regression). You will, however, get a value for the so-called

“Nagelkerke R Square” which is similar to the R-squared.
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Simple versus multiple regression models

The difference between simple and multiple regression models, is that in a multiple regression
each x-variable’s effect on y is estimated while taking into account the other x-variables’ effects
on y. We then say that these other x-variables are “held constant”, or “adjusted for”, or
“controlled for”. Because of this, multiple regression analysis is a way of dealing with the issue of

“confounding” variables, and to some extent also “mediating” variables (see Section 11.2).

It is highly advisable to run a simple ordinal regression for each of the x-variables before
including them in a multiple regression. Otherwise, you will not have anything to compare the
adjusted odds ratios with (i.e. what happened to the OR when other x-variables were included in
the analysis). Including multiple x-variables in the same model usually (but not always) means
that the associations are reduced in strength - which would of course be expected if the x-

variables overlapped in their effect on y.

Define your analytical sample

Before you begin, make sure that you have defined your analytical sample correctly (see Section

12.6).

278



15.1 Simple ordinal regression

Number of variables One dependent (y)

One independent (x)

Scale of variable(s) Dependent: ordinal
Independent: categorical (nominal/ordinal) or continuous

(ratio/interval)
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Simple ordinal regression: Function

Part1

1. Go to the Menu bar, choose Analyze\Regression\Ordinal.

2. A new window called Ordinal Regression will open.

3. In the left box, all your variables are displayed. You choose the variable you want
to have as your dependent variable (y) and transfer it to the box called
Dependent.

4. Then you choose the variable you want as your independent variable (x). If it is
categorical (i.e. nominal/ordinal with more than two values), you transfer it to the
box called Factor(s) and if it is continuous (i.e. ratio/interval) or binary, you
transfer it to the box called Covariate(s).

5. Click on OK to get the results in your Output window.
Part 2

As of SPSS v.15, you will not get odds ratios directly in your output - you will only
something called Estimate (which is the log odds). An easy solution is to calculate the
odds ratios as well as the 95 % confidence intervals in Excel, based on the Estimate (log

odds) and Std. Error (standard error) you get from SPSS.
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Simple ordinal regression: Syntax

Part1

PLUM DEPVAR BY INDEPVAR1 WITH INDEPVAR2
/CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) MXSTEP(5) PCONVERGE(1.0E-
6) SINGULAR(1.0E-8)

JLINK=LOGIT
/PRINT=FIT PARAMETER SUMMARY.

Part 2
Do the following in Excel based on the output you get from SPSS:

1. Open Excel

2. To get the OR, write in one cell:
=EXP(Estimate)

3. To get the lower end of the confidence interval, write in one cell:
=EXP(Estimate-1,96*Std. Error)

4. To get the lower end of the confidence interval, write in one cell:

=EXP(Estimate+1,96*Std. Error)

DEPVAR Name of the dependent variable.
BY INDEPVAR1 Name of the categorical (i.e. nominal/ordinal with more than two
categories) independent variable.*

or

WITH INDEPVAR?2 Name of the binary or continous independent variable.

* If you make dummies of your categorical variable, you include them as INDEPVARZ instead.
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Simple ordinal regression with a continuous x

Example 1

Suppose we want to examine the association between unemployment days (x) and self-rated
health (y) by means of a simple ordinal regression analysis. Unemployment days are measured
as the total number of days in unemployment during a year, and ranges from 0 to 365. Self-
rated health has the values 1=Poor; 2=Fair; and 3=Good. Let us say that we get an OR that is
0.93. That would mean that we have a negative association: the higher the number of

unemployment days, the lower the odds (or likelihood) of having good health.

Example 2

In another example, we may examine the association between intelligence scores (x) and the
amount of books read per month (y). Intelligence scores are measured by a series of tests that
render various amounts of points, and ranges between 20 and 160 points. Book reading has
the values 1=0 books; 2=1-3 books; and 3=4 or more books. Here, we get an OR of 1.81. We can

thus conclude that higher intelligence scores are associated with more reading of books.
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Simple ordinal regression with a continuous x: Example

(Data: SPSS_dataZ2.sav)

PLUM health WITH income

/CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) MXSTEP(5) PCONVERGE(1.0E-
6) SINGULAR(1.0E-8)

/LINK=LOGIT

/PRINT=FIT PARAMETER SUMMARY.

health Self-rated health (1=Very good; 2=Good; 3=Fair; 4=Poor)

income Income scale 1 (Lowest step) to 10 (Highest step)
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Output

Look at the table called Parameter Estimates. The column called Estimate shows the coefficient

for the variable income. Note that these coefficients are the log relative risks, and thus the null

value is 0 (like in linear regression). The coefficient is -0.205, which means that we have a

negative association between income and health. In other words, for every one-unit increase in

income (i.e. moving from one income step to a higher), the risk of poor health decreases. The

column called Sig. shows the p-value. Here, the p-value is 0.000 which means that the association

between income and health is statistically significant (at the 0.1 % level).

Parameter Estimates

95% Confidence Interval

Estimate | Std. Error Wald df Sig. Lower Bound | Upper Bound

Threshold  [health = 1] -2,180 020 | 11354,819 1 ,000 -2,220 -2,140
[health = 2] =127 018 50,120 1 Ri[v[u] - 163 -,082

[health = 3] 1,744 022 £340,268 1 Ri[i[u] 1,706 1,792

Location income -,205 004 3369 466 1 000 -,212 -,1488

Link function: Logit.

If we want to calculate the OR and the 95 % confidence intervals related to this OR, we do the

following in Excel:

1. To getthe OR, write in one cell:

=EXP(-0,205)

2. To get the lower end of the confidence interval, write in one cell:

=EXP(-0,205-1,96*0,004)

3. To get the lower end of the confidence interval, write in one cell:

=EXP(-0,205+1,96*0,004)

This gives us the OR=0.81 and the 95 % CI=0.81-0.82. This confirms what the Estimate already

told us. The interval does not include the null value (which is always x=1 in ordinal regression)

and, thus, the results are statistically significant (at the 5 % level).
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Simple ordinal regression with a binary x

Example 1

Suppose we want to examine the association between gender (x) and educational attainment
(y) by means of a simple ordinal regression analysis. Gender has the values 0=Man and
1=Woman, whereas educational attainment has the values 1=Low, 2=Medium, and 3=High.
Now, we get an OR of 1.62. This would mean that women have higher educational attainment

compared to men.

Example 2

Here we want to examine the association between having small children (x) and number of
pets (y) by means of a simple ordinal regression analysis. Having small children is measured
as either 0=No or 1=Yes. Number of pets has the values 1=No pet, 2=1-2 pets, and 3=3 or more
pets. Let us say that we get an OR that is 1.29. We can hereby conclude that families with small

children own more pets than families without small children.
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Simple ordinal regression with a binary x: Example

(Data: SPSS_dataZ2.sav)

PLUM health WITH gender

/CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) MXSTEP(5) PCONVERGE(1.0E-
6) SINGULAR(1.0E-8)

/LINK=LOGIT

/PRINT=FIT PARAMETER SUMMARY.

health Self-rated health (1=Very good; 2=Good; 3=Fair; 4=Poor)
gender Gender (0=Man; 1=Woman)
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Output

Look at the table called Parameter Estimates. The column called Estimate shows the coefficient

for the variable gender. Note that these coefficients are the log relative risks, and thus the null

value is 0 (like in linear regression). The coefficient is 0.185, which means that we have a

positive association between gender and health. In other words, for every one-unit increase in

gender (i.e. moving from man to woman), the risk of poor health increases. The column called

Sig. shows the p-value. Here, the p-value is 0.000 which means that the association between

gender and health is statistically significant (at the 0.1 % level).

Parameter Estimates

95% Confidence Interval

Estimate | Std. Error Wald df Sig. Lower Bound | Upper Bound

Threshold  [health = 1] -1,031 012 7628143 1 .aoo -1,055 -1,008
[health = 2] 824 012 £2597,260 1 R [v[u] 901 947

[health = 3] 2750 018 | 23583558 1 000 2718 2,785

Location gender 185 015 168,936 1 000 87 214

Link function: Logit.

If we want to calculate the OR and the 95 % confidence intervals related to this OR, we do the

following in Excel:

1. To getthe OR, write in one cell:

=EXP(0,185)

2. To get the lower end of the confidence interval, write in one cell:

=EXP(0,185-1,96*0,015)

3. To get the lower end of the confidence interval, write in one cell:

=EXP(0,185+1,96*0,015)

This gives us the OR=1.20 and the 95 % CI=1.17-1.24. This confirms what the Estimate already

told us. The interval does not include the null value (which is always x=1 in ordinal regression)

and, thus, the results are statistically significant (at the 5 % level).
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Simple ordinal regression with a categorical x (dummies)

Example 1

We want to investigate the association between educational attainment (x) and happiness (y)
by means of a simple ordinal regression analysis. Educational attainment has the values:
1=Compulsory education, 2=Upper secondary education, and 3=University education.
Happiness has the values 1=Happy, 2=Neither happy not unhappy; 3=Unhappy. Since our x-
variable is categorical with more than two categories, we have to create dummies (one 0/1
coded variable for each category). We choose those with compulsory education as our
reference category, meaning that this dummy will not be included in the analysis. We will thus
get one OR for upper secondary education and one OR for university education. Each of these
should be compared to the reference category. Let us say that we get an OR for upper
secondary education that is 0.87 and we get an OR for university education that is 0.66. We can
thus conclude that higher educational attainment is associated with less unhappiness (or more

happiness).

Example 2

Suppose we are interested in the association between family type (x) and adolescent smoking
(v). Family type has three categories: 1=Two-parent household, 2=]Joint custody, and 3=Single-
parent household. Adolescent smoking has the values 1=No, 2=Occasionally, and
3=Frequently. Since our x-variable is categorical with more than two categories, we have to
create dummies (one 0/1 coded variable for each category). We choose adolescents living in a
two-parent household as our reference category, meaning that this dummy will not be
included in the analysis. We will thus get one OR for joint custody and one OR for single-parent
household. Each of these should be compared to the reference category. The analysis results in
an OR of 1.33 for joint custody and an OR of 3.01 for single-parent household. That would

mean that adolescents living in family types other than two-parent households smoke more.
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Simple ordinal regression with a categorical x (dummies): Example

(Data: SPSS_data2.sav)

PLUM health WITH age_3cat_younger age_3cat older

/CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) MXSTEP(5) PCONVERGE(1.0E-
6) SINGULAR(1.0E-8)

/LINK=LOGIT

/PRINT=FIT PARAMETER SUMMARY.

health Self-rated health (1=Very good; 2=Good; 3=Fair; 4=Poor)
age_3cat_younger Age intervals: 15-29 (0=No; 1=Yes)

age_3cat_middle Age intervals: 30-49 (0=No; 1=Yes) Reference category
age_3cat_older Age intervals: 50-98 (0=No; 1=Yes)
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Output

Look at the table called Parameter Estimates. The column called Estimate shows the coefficients

for the dummies of the variable age_3cat. Note that these coefficients are the log relative risks,

and thus the null value is 0 (like in linear regression). The coefficient for age 3cat younger is -

0.368 and the coefficient for age 3cat older is 0.807. This suggests that we have an overall

positive association between age_3cat and health: the older the age, the greater the risk of ill-

health (or, to be more exact, that the younger individuals have better health compared to the

reference category and that the older individuals have worse health compared to the reference

category). The column called Sig. shows the p-values. Here, both p-values are 0.000 which means

that the association between age_3cat and health is statistically significant (at the 0.1 % level).

Parameter Estimates

95% Confidence Interval
Estimate | Std. Error Wald df Sig. Lower Bound | Upper Bound
Threshold  [health=1] -1,038 013 6422174 1 .aon -1,063 -1,012
[health = 2] 1,008 013 6118,718 1 .aon 984 1,034
[health = 3] 2,893 019 | 23070444 1 oo 2,856 2,831
Location age_3cat_younger -, 368 018 408,337 1 oo -404 -,333
age_3cat_older 807 018 2053541 1 aon 72 842

Link function: Logit.

If we want to calculate the OR and the 95 % confidence intervals related to this OR, we do the

following in Excel:

1. To getthe OR for age_3cat_younger, write in one cell:

=EXP(-0,368)

2. To get the lower end of the confidence interval, write in one cell:

=EXP(-0,368-1,96*0,018)

3. To get the lower end of the confidence interval, write in one cell:

=EXP(-0,368+1,96*0,018)

4. To getthe OR for age 3cat_older, write in one cell:

=EXP(0,807)

5. To get the lower end of the confidence interval, write in one cell:

=EXP(0,807-1,96*0,018)

6. To get the lower end of the confidence interval, write in one cell:

=EXP(0,807+1,96*0,018)
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For age_3cat_younger, this gives us the OR=0.69 and the 95 % CI=0.67-0.72. For age_3cat older,
we get the OR=2.24 and the 95 % CI=2.16-2.32. All of this confirms what the Estimate already
told us. The intervals do not include the null value (which is always x=1 in ordinal regression)

and, thus, the results are statistically significant (at the 5 % level).
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15.2 Multiple ordinal regression

Number of variables One dependent (y)

At least two independent (x)

Scale of variable(s) Dependent: ordinal

Independent: categorical (nominal/ordinal) or continuous

(ratio/interval)
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Multiple ordinal regression: Function

Part1

1. Go to the Menu bar, choose Analyze\Regression\Ordinal.

2. A new window called Ordinal Regression will open.

3. Inthe left box, all your variables are displayed. You choose the variable you want
to have as your dependent variable (y) and transfer it to the box called
Dependent.

4. Then you choose the variables you want as your independent variables (x). If
they are categorical (i.e. nominal/ordinal with more than two values), you
transfer them to the box called Factor(s) and they are continuous (i.e.
ratio/interval) or binary, you transfer them to the box called Covariate(s). It is
possible to include variables of both types at the same time.

5. Click on OK to get the results in your Output window.
Part 2

As of SPSS v.15, you will not get odds ratios directly in your output - you will only
something called Estimate (which is the log odds). An easy solution is to calculate the
odds ratios as well as the 95 % confidence intervals in Excel, based on the Estimate (log

odds) and Std. Error (standard error) you get from SPSS.
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Multiple ordinal regression: Syntax

Part1

PLUM DEPVAR BY INDEPVARS1 WITH INDEPVARS2
/CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) MXSTEP(5) PCONVERGE(1.0E-
6) SINGULAR(1.0E-8)

/LINK=LOGIT
/PRINT=FIT PARAMETER SUMMARY.

Part 2
Do the following in Excel based on the output you get from SPSS:

5. Open Excel

6. To get the OR, write in one cell:
=EXP(Estimate)

7. To get the lower end of the confidence interval, write in one cell:
=EXP(Estimate-1,96*Std. Error)

8. To get the lower end of the confidence interval, write in one cell:

=EXP(Estimate+1,96*Std. Error)

DEPVAR Name of the dependent variable.
BY INDEPVARS1 List the names of the categorical (i.e. nominal/ordinal with more
than two categories) independent variables.*

or

WITH INDEPVARS?2 List the names of the binary or continous independent variables.

* If you make dummies of your categorical variables, you include them as INDEPVAR?Z instead.
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Multiple ordinal regression

Example

Suppose we are interested to see if alcohol consumption (y) is related to having small children
(x), residential area (x), and income (x). Alcohol consumption has the values 1=None/low,
2=Medium, 3=High. Having small children is measured as either 0=No or 1=Yes. Residential
area has the values 1=Metropolitan, 2=Smaller city, and 3=Rural. Income is measured as the

yearly household income from salary in thousands of SEK (ranges between 100 and 700 SEK).

When we do our ordinal regression, we can include the variables “having children” and
“income” as they are, since the first is binary and the other is continuous. The remaining
variable - residential area - is categorical with more than two values and therefore dummies
must be used. We create one dummy for each category of “residential area”. The first dummy

(metropolitan) is chosen as the reference category and is thus excluded from the analysis.

In the regression analysis, we get an OR for having small children that is 0.65. That means that
those who have small children drink less alcohol. This association is adjusted for residential
area and income. With regards to residential area, we get an OR for “smaller city” of 1.32 and
the OR for “rural” is 2.44. This suggests that those who live in a smaller city drink more
alcohol, and so do those living in rural areas. These results are adjusted for having small
children and income. Finally, the OR for income is 0.95. This suggests that for every one-unit
increase in income (i.e. for every additional one thousand SEK), the consumption of alcohol

decreases. This association is adjusted for having small children and residential area.
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Multiple ordinal regression: Example

(Data: SPSS_data2.sav)

PLUM health WITH income gender age_3cat_younger age_3cat_older

/CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) MXSTEP(5) PCONVERGE(1.0E-
6) SINGULAR(1.0E-8)

/LINK=LOGIT

/PRINT=FIT PARAMETER SUMMARY.

health Self-rated health (1=Very good; 2=Good; 3=Fair; 4=Poor)
income Income scale 1 (Lowest step) to 10 (Highest step)
gender Gender (0=Man; 1=Woman)

age_3cat_younger Age intervals: 15-29 (0=No; 1=Yes)

age_3cat_middle Age intervals: 30-49 (0=No; 1=Yes) Reference category
age_3cat_older Age intervals: 50-98 (0=No; 1=Yes)
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Output

Look at the table called Parameter Estimates. The column called Estimate shows the coefficients
for the independent variables. Note that these coefficients are the log relative risks, and thus the
null value is 0 (like in linear regression). The coefficient for income is -0.195, which means that
we have a negative association between income and health. In other words, for every one-unit
increase in income (i.e. moving from one income step to a higher), the risk of poor health
decreases. This association is adjusted for gender and age_3cat. The coefficient for gender is
0.187, which means that we have a positive association between gender and health. In other
words, for every one-unit increase in gender (i.e. moving from man to woman), the risk of poor
health increases. This association is adjusted for income and age 3cat. Then we have the
dummies for age_3cat: the coefficient for age_3cat younger is -0.371 and the coefficient for
age_3cat_older is 0.757. This suggests that we have an overall positive association between
age 3cat and health: the older the age, the greater the risk of ill-health (or, to be more exact, that
the younger individuals have better health compared to the reference category and that the
older individuals have worse health compared to the reference category). This association is

adjusted for income and gender.

The column called Sig. shows the p-values. Here, all the p-values are 0.000 which means that the

mutually adjusted associations analyzed here are statistically significant (at the 0.1 % level).

Parameter Estimates

95% Confidence Interval

Estimate | Std. Error Wald df Sig. Lower Bound | Upper Bound

Threshold  [health=1] -1,8963 024 | 6453758 1 ooo =201 -1,915
[health = 2] 179 023 61,726 1 ooo 134 223

[health = 3] 2120 026 | 6453907 1 ooo 2068 2172

Location income - 185 004 | 3003156 1 ooo -,202 - 188
gender 187 016 142 460 1 ooo 156 217
age_3cat_younger =371 014 370,762 1 ooo =409 -.334
age_3cat_older TET 019 | 1619 585 1 ooo 720 FH3

Link function: Logit.

If we want to calculate the odds ratios and the 95 % confidence intervals related to these odds

ratios, we do the following in Excel:

1. To getthe OR for income, write in one cell:

=EXP(-0,195)
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2. To getthe lower end of the confidence interval, write in one cell:
=EXP(-0,195-1,96*0,004)

3. To get the lower end of the confidence interval, write in one cell:
=EXP(-0,195+1,96*0,004)

4. To getthe OR for gender, write in one cell:
=EXP(0,187)

5. To get the lower end of the confidence interval, write in one cell:
=EXP(0,187-1,96*0,016)

6. To getthe lower end of the confidence interval, write in one cell:
=EXP(0,187+1,96*0,016)

7. To getthe OR for age_3cat_younger, write in one cell:
=EXP(-0,371)

8. To get the lower end of the confidence interval, write in one cell:
=EXP(-0,371-1,96*0,019)

9. To get the lower end of the confidence interval, write in one cell:
=EXP(-0,371+1,96*0,019)

10. To get the OR for age_3cat_older, write in one cell:
=EXP(0,757)

11. To get the lower end of the confidence interval, write in one cell:
=EXP(0,757-1,96*0,019)

12. To get the lower end of the confidence interval, write in one cell:

=EXP(0,757+1,96*0,019)

These are the results:
income: OR=0.82, 95 % CI=0.82-0.83
gender: OR=1.21, 95 % CI=1.17-1.24
age_3cat_younger: OR=0.69, 95 % CI=0.66-0.72
age_3cat_older: OR=2.13, 95 % CI=2.05-2.21

All of this confirms what the Estimates already told us. The intervals do not include the null

value (which is always x=1 in ordinal regression) and, thus, the results are statistically

significant (at the 5 % level).
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15.3 Model diagnostics

Parallel lines

The assumptions behind ordinal regression are different from linear regression. For example,
we do not need to assume linearity, homoscedasticity or normality. Multicollinearity should
however be avoided (i.e. strong correlations between the x-variables in multiple ordinal
regression - check with correlation analysis; see Chapter 9). One critical thing that we need to
consider is called the “proportional odds assumption” or the “parallel lines assumptions”. The
assumption behind ordinal regression analysis is that the coefficients that describe the
relationship between, for example, the lowest versus all higher categories of the outcome
variable are the same as those that describe the relationship between the next lowest category
and all higher categories, and so on. Because the relationships between all pairs of categories are

assumed to be the same, we only get one estimate for each x-variable.

The parallel lines assumption

The effect of x is the same for each pair of categories iny

If the parallel lines assumption is violated, we should consider another type of analysis: either
we could use multinomial regression (see Chapter 16) or we could change our ordinal outcome

into a binary version and use logistic regression instead (see Chapter 14).
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Parallel lines assumption: Function

1. Go to the Menu bar, choose Analyze\Regression\Ordinal.

2. A new window called Ordinal Regression will open.

3. Inthe left box, all your variables are displayed. You choose the variable you want
to have as your dependent variable (y) and transfer it to the box called
Dependent.

4. Then you choose the variables you want as your independent variables (x). If

they are categorical (i.e. nominal/ordinal with more than two values), you

transfer them to the box called Factor(s) and they are continuous (i.e.

ratio/interval) or binary, you transfer them to the box called Covariate(s). It is

possible to include variables of both types at the same time.

Click on Output.

Tick the box called Test of parallel lines.

Click on Continue.

I O

Click on OK to get the results in your Output window.
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Parallel lines assumption: Syntax

PLUM DEPVAR BY INDEPVARS1 WITH INDEPVARS2

/CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) MXSTEP(5) PCONVERGE(1.0E-
6) SINGULAR(1.0E-8)

JLINK=LOGIT

/PRINT=FIT PARAMETER SUMMARY TPARALELL.

DEPVAR Name of the dependent variable.
BY INDEPVARS1 Name of the categorical (i.e. nominal/ordinal with more than two
categories) independent variables.*

or

WITH INDEPVARS2 Name of the binary or continous independent variables.

TPARALELL Order a test of the parallel lines assumption

* If you make dummies of your categorical variables, you include them as INDEPVAR2 instead.
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Parallel lines assumption: Example

(Data: SPSS_data2.sav)

PLUM health WITH income gender age_3cat_younger age_3cat_older

/CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) MXSTEP(5) PCONVERGE(1.0E-
6) SINGULAR(1.0E-8)

/LINK=LOGIT

/PRINT=FIT PARAMETER SUMMARY TPARALELL.

health Self-rated health (1=Very good; 2=Good; 3=Fair; 4=Poor)
income Income scale 1 (Lowest step) to 10 (Highest step)
gender Gender (0=Man; 1=Woman)

age_3cat_younger Age intervals: 15-29 (0=No; 1=Yes)

age_3cat_middle Age intervals: 30-49 (0=No; 1=Yes) Reference category
age_3cat_older Age intervals: 50-98 (0=No; 1=Yes)
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Output

Look at the table called Test of Parallel Lines. The column called Sig. shows the p-value for the
test of the parallel lines assumption. If the p-value is above 0.05, the test is statistically non-
significant and the assumption has not been violated. If the p-value is below 0.05, the test is
statistically significant and the assumption has been violated. In the current example, the p-value
is 0.000 and therefore the model violates the parallel lines assumption - therefore, we should

consider using another type of regression analysis.

Test of Parallel Lines®

-2 Log
Madel Likelihood Chi-Square df Sig.
Mull Hypothesis 1851,983
General 1487 964 404 015 8 000

The null hypothesis states that the location parameters (slope
coefficients) are the same across response categories.

a. Link function: Logit.
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16. MULTINOMIAL REGRESSION

16.1 Simple multinomial regression

16.2 Multiple multinomial regression

16.3 Model diagnostics
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Introduction

Multinomial regression is used when y is nominal with more than two categories, i.e.
polytomous (see Section 2.2). However, it is a good idea not to have too many categories because
the interpretation quickly gets quite messy (if you have more than 5-6, try to collapse some of

the categories).

If you have only one x, it is called “simple” multinomial regression, and if you have more than
one ¥, it is called “multiple” multinomial regression. Regardless of whether you are doing a
simple or a multiple regression, the x-variables can be categorical (nominal/ordinal) and/or

continuous (ratio/interval).

Key information from multinomial regression

1. Direction

Negative Relative risk ratio below 1

Positive Relative risk ratio above 1

2. Effect size

Relative risk ratio The relative risk of the outcome being one category divided by
the relative risk that the outcome is the baseline category, for

every one-unit increase in x

3. Statistical significance

P-value p<0.05 Statistically significant at the 5 % level
p<0.01 Statistically significant at the 1 % level
p<0.001 Statistically significant at the 0.1 % level

95 9% Confidence intervals Interval includes 1:
Statistically significant at the 5 % level
Interval does not include 1:

Statistically non-significant at the 5 % level
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Relative risk ratios (RRR)

The most complicated part about the multinomial regression is that we decide on a reference
category in the outcome variable as well (for linear, logistic and ordinal regression, we only had
to deal with reference categories for the x-variables). To make it easier to distinguish between
reference categories in x on the one hand, and in y on the other hand, the following text will
continue to talk about “reference category” when x-variables are concerned but use “reference

level” with regard to the y-variable.

All right, so our outcome should have a reference level - what does that mean? Let us use an

example:

Example

We want to investigate the association between gender (x) and preferred ice-cream flavour
(v). Gender has the values 0=Man and 1=Women. Preferred ice-cream flavour has the values:
1=Vanilla, 2=Chocolate, 3=Strawberry. We choose the first category (vanilla) as our reference
level. When we run the multinomial regression analysis, we will get two relative risk ratios;
one for the risk of the outcome being chocolate instead of vanilla depending on the values of
the x-variable, and one for the outcome being strawberry instead of vanilla depending on the

values of the x-variable.

So, basically multinomial regression is used to predict the “relative risk” of being a “case” based
on the values of the x-variable(s). Just as for linear regression analysis, we get a coefficient (log
relative risk) that shows the effect of x on y. However, because multinomial regression is based
on other assumptions that linear regression, we cannot interpret these coefficients very easily.
Instead we focus on something called the “relative risk ratio” (“RRR”). We can get the relative

risk ratio by taking the “exponent” of the coefficient: “exp(B)”.

So what is this about “relative risk ratios” - what happened to odds ratios? Well, these are two
different statistical concepts but they are very similar. As previously discussion in e.g. Chapters
14 and 15, the OR is the odds of the outcome being a case divided by the odds of the outcome
being a non-case, for every one-unit increase in x. The RRR is the risk of the outcome being a

case given a certain value of x, divided by the risk of the outcome being a case given another
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value of x. This may sound complicated, but the take-home message is that odds ratios and

relative risk ratios are interpreted in the similar way.

The RRR is interpreted in the following way: “for every one-unit increase in X, y
increases/decreases by [the RRR]”. Accordingly, if you get a negative RRR (below 1), you say:
“for every one-unit increase in x, y decreases by [the RRR]”, and if you get a positive RRR (above
1), you say: “for every one-unit increase in x, y increases by [the RRR]”. However - and this is
important - in multinomial regression we have to deal with the fact that our outcome has a
reference level to take into consideration. Therefore, the RRR in multinomial regression analysis
is interpreted in the following way: “for every one-unit increase in X, the risk of y being
[Category y2] compared to y being [Category y1; reference level] increases/decreases by [the
RRR]”, and for every one-unit increase in x, the risk of y being [Category y3] compared to y being

[Category y1; reference level] increases/decreases by [the RRR]”, and so on.

Unlike linear regression, where the null value (i.e. value that denotes no difference) is 0, the null
value for multinomial regression is 1. Also note that a RRR can never be negative - it can range
between 0 and infinity. What the RRR actually stands for — and whether we can say that an effect

is small or big — depends on the values of xand y.

P-values and confidence intervals

In multinomial regression analysis you can of course get information about statistical
significance, in terms of both p-values and confidence intervals. The p-values and the confidence
intervals will give you partly different information, but: they are not contradictory. If the p-value
is below 0.05, the 95 % confidence interval will not include 1 (statistical significance at the 5 %
level), and if the p-value is above 0.05, the 95 % confidence interval will include 1 (statistical

non-significance at the 5 % level).

Note that when you look at the p-value, you can rather easily distinguish between the
significance levels (i.e. you can directly say whether you have statistical significance at the 5 %
level, the 1 % level, or the 0.1 % level). When it comes to confidence intervals, SPSS will by
default choose 95 % level confidence intervals (i.e. statistical significance at the 5 % level). For
some analyses, it is however possible to change the confidence level for the intervals. For

example, you may instruct SPSS to show 99 % confidence intervals instead.
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R-Squared

In contrast to linear regression, “R-Squared” or “R2” is not very usable (again, because of the
assumptions behind multinomial regression). You will, however, get a value for the so-called

“Nagelkerke R Square” which is similar to the R-squared.

Simple versus multiple regression models

The difference between simple and multiple regression models, is that in a multiple regression
each x-variable’s effect on y is estimated while taking into account the other x-variables’ effects
on y. We then say that these other x-variables are “held constant”, or “adjusted for”, or
“controlled for”. Because of this, multiple regression analysis is a way of dealing with the issue of

“confounding” variables, and to some extent also “mediating” variables (see Section 11.2).

It is highly advisable to run a simple multinomial regression for each of the x-variables before
including them in a multiple regression. Otherwise, you will not have anything to compare the
adjusted relative risk ratios with (i.e. what happened to the RRR when other x-variables were
included in the analysis). Including multiple x-variables in the same model usually (but not
always) means that the associations are reduced in strength - which would of course be

expected if the x-variables overlapped in their effect on y.

Define your analytical sample

Before you begin, make sure that you have defined your analytical sample correctly (see Section

12.6).
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16.1 Simple multinomial regression

Number of variables One dependent (y)

One independent (x)

Scale of variable(s) Dependent: nominal (with more than two categories)
Independent: categorical (nominal/ordinal) or continuous

(ratio/interval)
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Simple multinomial regression: Function

1. Go to the Menu bar, choose Analyze\Regression\Multinomial Logistic.

2. Anew window called Multinomial Logistic Regression will open.

3. In the left box, all your variables are displayed. You choose the variable you want
to have as your dependent variable (y) and transfer it to the box called Dependent.

4. Click on Reference Category to choose which category of your outcome you want
to have as your reference level: First Category (lowest value), Last Category
(highest value) or Custom (any value you want).

5. Then you choose the variable you want as your independent variable (x). If it is
categorical (i.e. nominal/ordinal with more than two values), you transfer it to the
box called Factor(s) and if it is continuous (i.e. ratio/interval) or binary, you
transfer it to the box called Covariate(s).

6. Click on OK to get the results in your Output window.
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Simple multinomial regression: Syntax

NOMREG DEPVAR (BASE=LAST ORDER=ASCENDING) BY INDEPVAR1 WITH INDEPVAR2
JCRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0)
PCONVERGE(0.000001)

SINGULAR(0.00000001)

/MODEL

/STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR)
REMOVALMETHOD(LR)

/INTERCEPT=INCLUDE

/PRINT=PARAMETER SUMMARY LRT CPS STEP MFL

DEPVAR Name of the dependent variable.
BY INDEPVAR1 Name of the categorical (i.e. nominal/ordinal with more than two
categories) independent variable.*

or

WITH INDEPVAR?2 Name of the binary or continous independent variable.

* If you make dummies of your categorical variable, you include them as INDEPVAR?2 instead.
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Simple multinomial regression with a continuous x

Example 1

Suppose we want to examine the association between unemployment days (x) and type of
hospitalization (y) by means of a simple multinomial regression analysis. Unemployment days
are measured as the total number of days in unemployment during a year, and ranges from 0
to 365. Type of hospitalization has the values 1=No hospitalization, 2=0ut-patient care, and
3=In-patient care. We choose “no hospitalization” as our reference level. Let us say that we get
a RRR for unemployment days and out-patient care that is 2.88. That would mean that for
every one-unit increase of employment days, the risk of experiencing out-patient care
compared to no hospitalization increases. Moreover, we get a RRR for unemployment days and
in-patient care that is 4.02. This would suggest that for every one-unit increase of employment

days, the risk of experiencing in-patient care compared to no hospitalization increases.

Example 2

In another example, we may examine the association between intelligence scores (x) and the
preferred type of books (y). Intelligence scores are measured by a series of tests that render
various amounts of points, and ranges between 20 and 160 points. Preferred type of books has
the values 1=Fiction, 2=Non-fiction, 3=Comic books. We choose “fiction” as our reference level.
Here, we get a RRR of 1.40 for intelligence scores and non-fiction, meaning that for every one-
unit increase of intelligence, the likelihood of preferring non-fiction books increases. For
intelligence scores and comic books, the RRR is 0.92. This suggests that for every one-unit

increase of intelligence, the likelihood of preferring comic books decreases.
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Simple multinomial regression with a continuous x: Example

(Data: SPSS_datal.sav)

NOMREG bfast (BASE=FIRST ORDER=ASCENDING) WITH age
JCRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0)
PCONVERGE(0.000001)

SINGULAR(0.00000001)

/MODEL

JSTEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR)
REMOVALMETHOD(LR)

/INTERCEPT=INCLUDE

/PRINT=PARAMETER SUMMARY LRT CPS STEP MFL.

bfast Preferred breakfast (1=Energy bar; 2=0atmeal; 3=Cereal)
age Age in years (Min=18; Max=79)
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Output

Look at the table called Parameter Estimates. The column called Exp(B) shows the relative risk

ratio (RRR) for the variable age. The RRR for Oatmeal is 1.116, which means that the likelihood

of preferring oatmeal over an energy bar increases for every one-unit increase in age. The RRR is

1.026 for Cereal, which means that the likelihood of preferring cereal over an energy bar also

increases for every one-unit increase in age. The column called Sig. shows the p-value. Here,

both p-values are 0.000 which means that the results are statistically significant (at the 0.1 %

level). Then we look at the part of the table called 95 % Confidence Interval for Exp (B). This

gives us the lower confidence limit (Lower Bound) and the upper confidence limit (Upper

Bound). The intervals do not include the null value (which is always x=1 in multinomial

regression) and, thus, the results are statistically significant (at the 5 % level).

Parameter Estimates

95% Confidence Interval for Exp

(E)

Freferred breakfast® B Std. Error Wald df Sig. Exp(B) Lower Bound Upper Bound
Oatmeal  Intercept -5 498 A71 | 1036475 1 Looo

age A10 003 | 1162,981 1 ,0oo 1,116 1109 1,124
Cereal Intercept -.838 ,0ag 71,228 1 Looo

age 026 002 121,674 1 ,0oo 1,026 1,022 1,031

a. The reference category is: Energy har.
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Simple multinomial regression with a binary x

Example 1

Suppose we want to examine the association between gender (x) and political views (y) by
means of a simple multinomial regression analysis. Gender has the values 0=Man and
1=Woman, whereas political views has the values 1=Conservative, 2=Centre, and 3=Liberal.
The category “centre” is chosen as the reference level. Now, we get a RRR of 0.82 for
conservative, which means that women are less likely to be conservative than centre
compared to men. The RRR for liberal is 1.39, suggesting that women are more likely to be

liberal than centre compared to men.

Example 2

Here we want to examine the association between having small children (x) and the type of
pet owned (y) by means of a simple multinomial regression analysis. Having small children is
measured as either 0=No or 1=Yes. Type of pet owned has the values 1=No pet, 2=Cat, 3=Dog,
and 4=0ther type of pet. The category “no pet” is chosen as the reference level. Let us say that
we get a RRR for cat that is 1.50. This means that those who have small children are more
likely to own a cat than no pet at all, compared to those who do not have small children. The
RRR for dog is 1.75, suggesting that those who have small children are more likely to own a
dog than no pet at all, compared to those who do not have small children. Moreover, the RRR
for “other type of pet” is 1.96, which tells us that those who have small children are more likely
to own “other type of pet” than no pet at all, compared to those who do not have small

children.
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Simple multinomial regression with a binary x: Example

(Data: SPSS_datal.sav)

NOMREG bfast (BASE=FIRST ORDER=ASCENDING) WITH gender
JCRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0)
PCONVERGE(0.000001)

SINGULAR(0.00000001)

/MODEL

JSTEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR)
REMOVALMETHOD(LR)

/INTERCEPT=INCLUDE

/PRINT=PARAMETER SUMMARY LRT CPS STEP MFL.

bfast Preferred breakfast (1=Energy bar; 2=0atmeal; 3=Cereal)
gender Gender (0=Man; 1=Woman)
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Output

Look at the table called Parameter Estimates. The column called Exp(B) shows the relative risk

ratio (RRR) for the variable gender. The RRR for Oatmeal is 1.030, which means that women are

more likely than men to prefer oatmeal over an energy bar. The RRR for Cereal is 1.029, which

means that women are more likely than men to also prefer cereal over an energy bar. The

column called Sig. shows the p-value. Here, both p-values are above 0.05 which means that the

results are not statistically significant. Then we look at the part of the table called 95 %

Confidence Interval for Exp (B). This gives us the lower confidence limit (Lower Bound) and the

upper confidence limit (Upper Bound). The intervals include the null value (which is always x=1

in multinomial regression) and, thus, the results are not statistically significant (at the 5 %

level).

Parameter Estimates

95% Confidence Interval for Exp
(B)
Preferred breakfast® B Std. Errar Wald df Sig. Exp(B) Lower Bound Upper Bound
Catmeal  Intercept -0e 051 1248 1 720
gender 030 072 72 1 678 1,030 885 1,186
Cereal Intercept 85 048 14,3258 1 Jooo
gender 028 068 174 1 672 1,029 400 1177

a. The reference category is: Energy bar.
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Simple multinomial regression with a categorical x (dummies)

Example 1

We want to investigate the association between educational attainment (x) and building type
(v) by means of a simple multinomial regression analysis. Educational attainment has the
values: 1=Compulsory education, 2=Upper secondary education, and 3=University education.
Building type has the values 1=Apartment, 2=Town house, and 3=Villa. We choose
“apartment” as our reference level. Since our x-variable is categorical with more than two
categories, we have to create dummies (one 0/1 coded variable for each category). We choose
those with compulsory education as our reference category, meaning that this dummy will not
be included in the analysis. The RRR for upper secondary education in combination with town
house is 2.01, meaning that those with upper secondary education are more likely to live in a
town house than an apartment, compared to those with compulsory education. The RRR for
upper secondary education in combination with villa is 1.32, meaning that those with upper
secondary education are more likely to live in a villa than an apartment, compared to those
with compulsory education. For university education in combination with town house, the
RRR is 0.95, suggesting that those who have university education are less likely to live in a
town house than an apartment compared to those with compulsory education. Finally, the
RRR for university education in combination with villa is 3.44, meaning that those with
university education are more likely to live in a villa than an apartment, compared to those

with compulsory education.

318



Example 2

Suppose we are interested in the association between family type (x) and adolescent health
behaviour (y). Family type has three categories: 1=Two-parent household, 2=]Joint custody,
and 3=Single-parent household. Adolescent health behaviour has the values 1=No smoking or
alcohol consumption, 2=Smoking, 3=Alcohol consumption, 4=Both smoking and alcohol
consumption. We choose the category no smoking or alcohol consumption as the reference
level. Since our x-variable is categorical with more than two categories, we have to create
dummies (one 0/1 coded variable for each category). We choose adolescents living in a two-
parent household as our reference category, meaning that this dummy will not be included in
the analysis. The RRR for the combination joint custody and smoking is 1.20, meaning that
adolescents living in joint custody are more likely to smoke than not to smoke or drink alcohol
compared to those living in a two-parent household. The RRR for the combination single-
parent household and smoking is 1.49, meaning that adolescents living in single-parent
household are more likely to smoke than not to smoke or drink alcohol compared to those
living in a two-parent household. The RRR for the combination joint custody and alcohol
consumption is 1.00, meaning that adolescents living in joint custody are as likely to drink
alcohol as not to smoke or drink alcohol compared to those living in a two-parent household.
The RRR for the combination single-parent household and alcohol consumption is 2.02,
meaning that adolescents living in single-parent household are more likely to drink alcohol
than not to smoke or drink alcohol compared to those living in a two-parent household. The
RRR for the combination joint custody and both smoking and alcohol consumption is 1.55,
meaning that adolescents living in joint custody are more likely to both smoke and drink
alcohol than not to smoke or drink alcohol compared to those living in a two-parent
household. The RRR for the combination single-parent household and both smoking and
alcohol consumption is 4.45, meaning that adolescents living in single-parent household are
more likely to both smoke and drink alcohol than not to smoke or drink alcohol compared to

those living in a two-parent household.
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Simple multinomial regression with a categorical x (dummies): Example

(Data: SPSS_datal.sav)

NOMREG bfast (BASE=FIRST ORDER=ASCENDING) WITH edcat no edcat somecoll
edcat_colldeg edcat_postgrad

/CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0)
PCONVERGE(0.000001)

SINGULAR(0.00000001)

/MODEL

/STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR)
REMOVALMETHOD(LR)

/INTERCEPT=INCLUDE

/PRINT=PARAMETER SUMMARY LRT CPS STEP MFL

bfast Preferred breakfast (1=Energy bar; 2=0atmeal; 3=Cereal)
edcat_no Did not complete high school (0=No; 1=Yes)
edcat_highsc High school degree (0=No; 1=Yes) Reference group
edcat_somecoll Some college (0=No; 1=Yes)

edcat_colldeg College degree (0=No; 1=Yes)

edcat_postgrad Post-undergraduate degree (0=No; 1=Yes)

320



Output

Look at the table called Parameter Estimates. The column called Exp(B) shows the relative risk
ratios (RRR) for the dummies of the variable edcat. The first part of the table concerns
educational differences in Energy bar versus Oatmeal. The RRR for the combination edcat_no
and Oatmeal is 1.568, which means that those who did not complete high school are more likely
to prefer oatmeal over an energy bar compared to those with a high school degree. The RRR is
for the combination edcat_somecoll and Oatmeal is 0.922, which means that those who have
some college education are less likely to prefer oatmeal over an energy bar compared to those
with a high school degree. The RRR for the combination edcat _colldeg and Oatmeal is 1.032,
which means that those who have a college degree are more likely to prefer oatmeal over an
energy bar compared to those with a high school degree. The RRR for the combination
edcat_postgrad and Oatmeal is 0.955, which means that those who have a post-undergraduate
degree are less likely to prefer oatmeal over an energy bar compared to those with a high school

degree.

The second part of the table concerns educational differences in Energy bar versus Cereal. The
RRR for the combination edcat no and Cereal is 1.049, which means that those who did not
complete high school are more likely to prefer cereal over an energy bar compared to those with
a high school degree. The RRR for the combination edcat somecoll and Cereal is 1.039, which
means that those who have some college education are more likely to prefer cereal over an
energy bar compared to those with a high school degree. The RRR for the combination
edcat_colldeg and Cereal is 1.075, which means that those who have a college degree are more
likely to prefer cereal over an energy bar compared to those with a high school degree. The RRR
for the combination edcat_postgrad and Cereal is 1.047, which means that those who have a
post-undergraduate degree are more likely to prefer cereal over an energy bar compared to

those with a high school degree.

The column called Sig. shows the p-values. Here, most p-values are above 0.05 which means that
the results are not statistically significant. The only significant difference is for edcat no and
Oatmeal (p=0.000) meaning that those who did not complete high school are significantly more
likely to prefer oatmeal over an energy bar compared to those with a high school degree (at the
0.1 % level). Then we look at the part of the table called 95 % Confidence Interval for Exp (B).
This gives us the lower confidence limit (Lower Bound) and the upper confidence limit (Upper
Bound). Most intervals - with the exception of edcat no and Oatmeal - include the null value
(which is always x=1 in multinomial regression) and, thus, the overall results are not statistically

significant.
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Parameter Estimates

95% Confidence Interval for Exp

(B)
Preferred breakfast® =] Stal. Error Wald df Sig. Exp(B) Lower Bound Upper Bound
Qatmeal  Intercept -082 064 1,642 1 200
edcat_no 450 103 18984 1 0oo 1,668 1,281 1,818
edcat_somecoll - 081 04 603 1 437 822 753 113
edeat_colldeg 03z 100 01 1 751 1,032 848 1,256
edcat_postgrad -046 150 096 1 7587 955 T 1,281
Cereal Intercept 163 060 7,31 1 o7
edecat_no 048 103 217 1 G641 1,048 857 1,284
edeat_somecaoll 039 096 B2 1 GBT 1,038 861 1,255
edeat_colldeg a7z 054 5G4 1 441 1,075 8a4 1,292
edeat_postgrad 04@ 139 109 1 T4 1,047 788 1,374

a. The reference category is: Energy bar.
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16.2 Multiple multinomial regression

Number of variables One dependent (y)

At least two independent (x)

Scale of variable(s) Dependent: nominal (with more than two categories)
Independent: categorical (nominal/ordinal) or continuous

(ratio/interval)
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Multiple multinomial regression: Function

1. Go to the Menu bar, choose Analyze\Regression\Multinomial Logistic.

2. Anew window called Multinomial Logistic Regression will open.

3. In the left box, all your variables are displayed. You choose the variable you want
to have as your dependent variable (y) and transfer it to the box called Dependent.

4. Click on Reference Category to choose which category of your outcome you want
to have as your reference level: First Category (lowest value), Last Category
(highest value) or Custom (any value you want).

5. Then you choose the variables you want as your independent variables (x). If they
are categorical (i.e. nominal/ordinal with more than two values), you transfer
them to the box called Factor(s) and they are continuous (i.e. ratio/interval) or
binary, you transfer them to the box called Covariate(s). It is possible to include
variables of both types at the same time.

6. Click on OK to get the results in your Output window.
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Multiple multinomial regression: Syntax

NOMREG DEPVAR (BASE=LAST ORDER=ASCENDING) BY INDEPVARS1 WITH INDEPVARS2
JCRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0)
PCONVERGE(0.000001)

SINGULAR(0.00000001)

/MODEL

/STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR)
REMOVALMETHOD(LR)

/INTERCEPT=INCLUDE

/PRINT=PARAMETER SUMMARY LRT CPS STEP MFL

DEPVAR Name of the dependent variable.
BY INDEPVARS1 List the names of the categorical (i.e. nominal/ordinal with more
than two categories) independent variables.*

or

WITH INDEPVARS?2 List the names of the binary or continous independent variables.

* If you make dummies of your categorical variables, you include them as INDEPVARZ instead.
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Multiple multinomial regression

Example

Suppose we are interested to see if smoking (y) is related to having small children (x),
residential area (x), and income (x). Smoking has the values 1=Non-smoker, 2=Former
smoker, and 3=Current smoker. The category “non-smoker” is chosen as the reference level.
Having small children is measured as either 0=No or 1=Yes. Residential area has the values
1=Metropolitan, 2=Smaller city, and 3=Rural. Income is measured as the yearly household
income from salary in thousands of SEK (ranges between 100 and 700 SEK). When we do our
multinomial regression, we can include the variables “having children” and “income” as they
are, since the first is binary and the other is continuous. The remaining variable - residential
area - is categorical with more than two values and therefore dummies must be used. We
create one dummy for each category of “residential area”. The first dummy (metropolitan) is

chosen as the reference category and is thus excluded from the analysis.

In the regression analysis, we get a RRR of 1.19 for having small children and former smoker,
suggesting that those who have small children are more likely to be former smokers than non-
smokers compared to those who do not have small children. Then we get a RRR of 0.77 for
having small children and being a current smoker, which means that those who have small
children are less likely to be current smokers than non-smokers compared to those who do
not have small children. These results are adjusted for residential area and income. The RRR
for living in a smaller city and being a former smoker is 2.09, which suggests that those who
live in a smaller city are more likely to be former smokers than non-smokers compared to
those who live in a metropolitan area. The RRR for living in a smaller city and being a current
smoker is 3.71, which suggests that those who live in a smaller city are more likely to be
current smokers than non-smokers compared to those who live in a metropolitan area. The
RRR for living in an urban area and being a former smoker is 3.59, which suggests that those
who live in an urban area are more likely to be former smokers than non-smokers compared
to those who live in a metropolitan area. The RRR for living in an urban area and being a
current smoker is 5.01, which suggests that those who live in an urban area are more likely to
be current smokers than non-smokers compared to those who live in a metropolitan area.
These results are adjusted for having small children and income. With regard to income, the
RRR of being a former smoker is 0.93, suggesting that for every one-unit increase in income,

the risk of being a former smoker decreases. The RRR of being a current smoker is 0.78, which

326



means that for every one-unit increase in income, the risk of being a current smoker also

decreases. These results are adjusted for having small children and residential area.
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Multiple multinomial regression: Example

(Data: SPSS_datal.sav)

NOMREG bfast (BASE=FIRST ORDER=ASCENDING) WITH age gender edcat_no edcat_somecoll
edcat_colldeg edcat_postgrad

/CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0)
PCONVERGE(0.000001)

SINGULAR(0.00000001)

/MODEL

/STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR)
REMOVALMETHOD(LR)

/INTERCEPT=INCLUDE

/PRINT=PARAMETER SUMMARY LRT CPS STEP MFIL.

bfast Preferred breakfast (1=Energy bar; 2=0atmeal; 3=Cereal)
age Age in years (Min=18; Max=79)

gender Gender (0=Man; 1=Woman)

edcat_no Did not complete high school (0=No; 1=Yes)
edcat_highsc High school degree (0=No; 1=Yes) Reference group
edcat_somecoll Some college (0=No; 1=Yes)

edcat_colldeg College degree (0=No; 1=Yes)

edcat_postgrad Post-undergraduate degree (0=No; 1=Yes)
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Output

Look at the table called Parameter Estimates. The column called Exp(B) shows the mutually
adjusted relative risk ratios for the variables gender, age, and edcat. The first part of the table
concerns differences between Energy bar and Oatmeal. The RRR for gender and Oatmeal is
1.059, which means that women are more likely to prefer oatmeal over energy bars. For age and
Oatmeal, the RRR is 1.117, suggesting that for every one-unit increase in age, individuals are
more likely to prefer oatmeal over energy bars. The RRR for the combination edcat no and
Oatmeal is 0.966, which means that those who did not complete high school are less likely to
prefer oatmeal over an energy bar compared to those with a high school degree. The RRR for the
combination edcat somecoll and Oatmeal is 0.859, which means that those who have some
college education are less likely to prefer oatmeal over an energy bar compared to those with a
high school degree. The RRR for the combination edcat colldeg and Oatmeal is 1.086, which
means that those who have a college degree are more likely to prefer oatmeal over an energy bar
compared to those with a high school degree. The RRR for the combination edcat_postgrad and
Oatmeal is 0.939, which means that those who have a post-undergraduate degree are less likely

to prefer oatmeal over an energy bar compared to those with a high school degree.

The second part of the table concerns educational differences in Energy bar versus Cereal. For
gender and Cereal, the RRR is 1.042. This means that women are more likely to prefer cereal
over energy bars. The RRR for age and Cereal is 1.027, suggesting that for every one-unit
increase in age, individuals are more likely to prefer cereal over energy bars. The RRR for the
combination edcat_no and Cereal is 0.911, which means that those who did not complete high
school are less likely to prefer cereal over an energy bar compared to those with a high school
degree. The RRR for the combination edcat somecoll and Cereal is 1.007, which means that
those who have some college education are about as likely to prefer cereal over an energy bar
compared to those with a high school degree. The RRR for the combination edcat_colldeg and
Cereal is 1.028, which means that those who have a college degree are more likely to prefer
cereal over an energy bar compared to those with a high school degree. The RRR for the
combination edcat_postgrad and Cereal is 0.959, which means that those who have a post-
undergraduate degree are less likely to prefer cereal over an energy bar compared to those with

a high school degree.

The column called Sig. shows the p-values. Here, most p-values are above 0.05 which means that
the results are not statistically significant (at the 5 % level). However, age is the exception
(p=0.000): increased age is associated at a statistically significant level (the 0.1 % level) with

preferring both oatmeal and cereal over energy bars. Then we look at the part of the table called
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95 % Confidence Interval for Exp (B). This gives us the lower confidence limit (Lower Bound)

and the upper confidence limit (Upper Bound). Most intervals — with the exception of the ones

concerning age - include the null value (which is always x=1 in multinomial regression) and,

thus, the overall results are not statistically significant (at the 5 % level).

Parameter Estimates

95% Confidence Interval for Exp
(B
Preferred hreakfast? E Std. Error Wald df Sig. Exp(B) Lower Bound Upper Bound
Oatmeal  Intercept -5,518 188 856,805 1 000
gender 058 088 431 1 A1 1,053 892 1,258
age 10 003 | 1148380 1 000 1117 1,110 1124
edcat_no -035 127 074 1 785 966 753 1,238
edcat_somecoll - 152 128 1,411 1 235 859 JGE3 1,104
edcat_colldeg 082 122 A58 1 600 1,086 885 1,378
edcat_postgrad -063 180 122 1 727 939 661 1,335
Cereal Intercept -,B59 15 56,318 1 ooo
gender 041 070 345 1 687 1,042 908 1,194
age 026 002 122,413 1 000 1,027 1,022 1,032
edcat_no -094 108 785 1 378 a1 740 1120
edcat_somecoll 007 098 005 1 a4 1,007 832 1,220
edcat_colldeq 028 095 084 1 J71 1,028 853 1,238
edcat_postgrad -042 41 083 1 TEB 959 728 1,263

a. The reference category is: Energy bar.
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16.3 Model diagnostics

The assumptions behind multinomial regression are different from linear regression. For
example, we do not need to assume linearity, homoscedasticity or normality. Multicollinearity
should however be avoided (i.e. strong correlations between the x-variables in multiple ordinal
regression - check with correlation analysis; see Chapter 9). It is not very easy to evaluate model
fit with multinomial regression. One alternative is to carry out a bunch of separate logistic
regressions. For example, if the outcome was smoking and that variable had the categories
1=Non-smoker, 2=Former smoker, and 3=Current smoker, we could make two separate logistic
regressions. The first would have the outcome 0=Non-smoker and 1=Former smoker, whereas
the second would have the outcome 0=Non-smoker and 1=Current smoker. Then we could use
the same type of model diagnostics as for logistic regression (see Section 14.3). Another option
to assess the model’s goodness of fit - or basically its predictive power - is to use a “likelihood
ratio test” (which is a type of chi-square test). The likelihood ratio test gives an answer to
whether the estimated model (i.e. the model with one or more x-variables) predicts the outcome

better than the null model (i.e. a model without any x-variables).

Estimate the goodness of fit

Likelihood ratio test ' Does the estimated model predict the outcome better than the

null model?
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Likelihood ratio test: Example

(Data: SPSS_datal.sav)

NOMREG bfast (BASE=FIRST ORDER=ASCENDING) WITH gender age edcat_no edcat_somecoll
edcat_colldeg edcat_postgrad

/CRITERIA CIN(95) DELTA(0) MXITER(100) MXSTEP(5) CHKSEP(20) LCONVERGE(0)
PCONVERGE(0.000001)

SINGULAR(0.00000001)

/MODEL

/STEPWISE=PIN(.05) POUT(0.1) MINEFFECT(0) RULE(SINGLE) ENTRYMETHOD(LR)
REMOVALMETHOD(LR)

/INTERCEPT=INCLUDE

/PRINT=PARAMETER SUMMARY LRT CPS STEP MFL

bfast Preferred breakfast (1=Energy bar; 2=0atmeal; 3=Cereal)
age Age in years (Min=18; Max=79)

gender Gender (0=Man; 1=Woman)

edcat_no Did not complete high school (0=No; 1=Yes)
edcat_highsc High school degree (0=No; 1=Yes) Reference group
edcat_somecoll Some college (0=No; 1=Yes)

edcat_colldeg College degree (0=No; 1=Yes)

edcat_postgrad Post-undergraduate degree (0=No; 1=Yes)
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Output

Look at the table called Model Fitting Information. The column called Sig. shows the p-value for

the likelihood ratio test. If the p-value is above 0.05, the test is statistically non-significant and

the estimated model fits the data better than the empty model. If the p-value is below 0.05, the

test is statistically significant and this means that the estimated model does not fit the data

better. In the current example, the p-value is 0.000 and therefore we can say that the estimated

model fits the data rather poorly.

Maodel Fitting Information

Model Fitting
Criteria Likelihood Fatio Tests
-2 Log
Maodel Likelihood Chi-Square df Sig.
Intercept Only 4996 455
Final 3010464 1885991 12 Qoo
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17.INTERACTION ANALYSIS

17.1 Interaction analysis for linear regression

17.2 Interaction analysis for logistic regression
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Introduction

A moderator (or effect modifier) is a variable (z) that influences the very association between
the x-variable and the y-variable. Thus, the association between x and y looks different

depending on the value of z.

Some examples

We want to examine the association between social support (x) and mental health (y). We
think that the association may be moderated by gender (z). For example, we may expect social
support to be more important for mental health among women than among men.

We are interested in the association between mother’s educational attainment (x) and babies’
birth weight (y). It is reasonable that mother’s smoking (z) affects that association: there may
be an association between x and y if the mother smokes, but no association between x and y if

the mother does not smoke.

335



Main effects and interaction effects

In order to carry out an interaction analysis, we first we need to decide on the type of regression
analysis that fits our outcome of choice - it could be any type (e.g. linear, logistic, ordinal,
multinomial, or any other type). When we have decided that, we need a minimum of three

independent variables.

Independent variables

X The variable we are mainly interested in with regard to its effect on y.

Called “main effect term”.

y The variable we suspect may modify the effect of x on y.

Called “main effect term”.

x*y The product of x and z - or the x-variable times the z-variable.
Called “interaction effect term” or simple “interaction term”.

Create the interaction with the Compute command (see Section 5.2).

Based on the interaction analysis, we get information on whether or not there is a statistically
significant interaction (i.e. if the z-variable modifies the effect of x on y or not). We also get

information on in which direction the interaction effect goes, i.e. what it means.
Measurement scales

There are some important things to consider before carrying out the interaction analysis, such
as the measurement scale of the independent variables (see Section 2.2). Generally, it is easier to

interpret interaction terms based on the following combinations:

Combinations of variables

One binary x * one binary z

One ordinal/ratio/interval x * one binary z

One binary x * one ordinal/ratio/interval z

One ordinal/ratio/interval x * one ordinal/ratio/interval z
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In other words: avoid nominal variables with more than two categories! If you combine two
ordinal /ratio/interval variables, make sure that x-variable and the z-variable goes in the same
direction. This means that higher values in both variables should be either “better” or “worse” in

relation to the outcome.

Interpretation

The most complicated part about interaction analysis is the interpretation. It is important that
you keep track how your variables are coded, if you want to say something about what the

interaction means.

Example

We want to examine the association between social support (x) and happiness (y). We think
that the association may be moderated by gender (z). The following hypotheses are
formulated: 1) Those with higher levels of social support are more likely to be happy, 2)
Women are more likely to be happy, and 3) Social support is more strongly associated with

happiness among women than among men.

Since the outcome is binary (0=Not happy and 1=Happy), we choose logistic regression
analysis. Social support ranges between 0 and 10, where higher values reflect higher levels of

social support. Gender has the values 0=Man and 1=Women.

To begin with, we examine the association between x and y: the odds ratio for social support is
1.20, which confirmed our first hypothesis. Next, we examine the association between z and y:
the odds ratio for gender is 1.17, which confirms the second hypothesis. Finally, we include x
and z as well as the interaction term (i.e. x*z) in a new logistic regression. The interaction term
has an odds ratio of 1.45, which means that the combination of having higher levels of social

support and being a woman is associated with increasing chances of being happy.
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If the interpretation of the interaction analysis is difficult, you may improve your understanding
by doing a separate regression analysis for each category of the z-variable (this is of course only
possible if you have a rather large dataset and not too many categories in your z-variable). This

is called “stratified” analyses. We can go back to the example to illustrate this:

Example

We want to examine the association between social support (x) and happiness (y). We think
that the association may be moderated by gender (z). The following hypotheses are
formulated: 1) Those with higher levels of social support are more likely to be happy, 2)
Women are more likely to be happy, and 3) Social support is more strongly associated with

happiness among women than among men.

Since the outcome is binary (0=Not happy and 1=Happy), we choose logistic regression
analysis. Social support ranges between 0 and 10, where higher values reflect higher levels of

social support. Gender has the values 0=Man and 1=Women.

To begin with, we examine the association between x and y among men only: the odds ratio for
social support is 1.04. Next, we examine the association between x and y among women only:
the odds ratio for social support is 1.76. Thus, we now see that we have a stronger effect of
social support on happiness among women than among men (just like the interaction analysis

said.

Remember, however: stratified analyses are perhaps easier to understand, but if you want to say
that differences between strata (i.e. categories of the z-variable) are statistically significant, you

should do a proper interaction analysis.
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Interaction analysis for linear regression: Example

(Data: SPSS_datal.sav)
Part1

COMPUTE active_gender=active*gender.
EXECUTE.

Part 2

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS CI(95) R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT hourstv
/METHOD=ENTER active gender active_gender.

hourstv Hours spent watching TV last week (Min=0; Max=36)
active Active lifestyle (0=No; 1=Yes)

gender Gender (0=Man; 1=Woman)

active_gender Interaction term: active*gender
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Output

Look at the table called Coefficients. The column called B shows the B coefficients. We focus on
the B coefficient for the interaction term, active_gender. Here, it is 0.211. This means that the
combination of being active (since this category has the higher value) and being a woman (since
this category has the higher value) is associated with more TV watching. The column called Sig.
shows the p-value. For the interaction term, active_gender, the p-value is 0.471 which means
that the interaction is not statistically significant (at least not at the 5 % level). Then we look at
the part of the table called 95 % Confidence Interval for B. This gives us the lower confidence
limit (Lower Bound) and the upper confidence limit (Upper Bound). For the interaction term,
active_gender, the lower limit is -0.364 whereas the upper limit is -0.787. The interval includes
the null value (which is always x=0 in linear regression) and, thus, the results are not statistically

significant.

To sum up, there is no statistically significant interaction between having an active lifestyle and
gender with regard to TV watching. Put differently, gender does not moderate the association

between active lifestyle and hours watching TV.

Coefficients®

Standardized
Unstandardized Coefficients Coefficients 95 0% Confidence Interval for B
Madel B Std. Error Beta 1 Sig. Lower Bound Upper Bound
1 (Constant) 18,718 142 138,533 000 19,440 19958
Active lifestyle -045 210 -004 - 215 830 - 456 (366
Gender =201 201 -018 -1,003 316 -594 182
active_gender 211 2893 017 720 471 - 364 TBT

a. Dependent Variable: Hours spent watching TV last week
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Interaction analysis for logistic regression: Example

(Data: SPSS_datal.sav)
Part1

COMPUTE age_gender=age*gender.
EXECUTE.

Part 2

LOGISTIC REGRESSION VARIABLES active
/METHOD=ENTER age gender age_gender
/PRINT=CI(95)
/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).

active Active lifestyle (0=No; 1=Yes)
age Age in years (Min=18; Max=79)
gender Gender (0=Man; 1=Woman)
age_gender Interaction term: age*gender
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Output

Look at the table called Coefficients. The column called Exp(B) shows the odds ratios (OR). We
focus on the OR for the interaction term, age_gender. Here, it is 1.016. This means that the
combination of being older (since increased values reflect older age) and being a woman (since
this category has the higher value) increased the likelihood of being active. The column called
Sig. shows the p-value. For the interaction term, age_gender, the p-value is 0.000 which means
that the interaction is statistically significant (at the 0.1 % level). Then we look at the part of the
table called 95 % C.I. for EXP(B). This gives us the lower confidence limit (Lower) and the upper
confidence limit (Upper). For the interaction term, age_gender, the lower limit is 1.009 whereas
the upper limit is 1.023. The interval does not includes the null value (which is always x=1 in

logistic regression) and, thus, the results are statistically significant.

To sum up, there is a statistically significant interaction between having age and gender with
regard to having an active lifestyle. Put differently, gender does moderate the association
between age and active lifestyle: age has a larger positive effect on active lifestyle among women

than among men.

Variables in the Equation

95% C.I.for EXP(B)
B S.E. Wald df Sig. Exp(B) Lower Upper
Step1® age -,037 003 | 214767 1 000 GR4 959 Relt
gender -,BBE 169 16,627 1 000 604 362 701
age_gender 018 003 21,680 1 000 1,016 1,008 1,023

Constant 1,566 124 | 150 448 1 000 4787

a. Variable(s) entered on step 1: age, gender, age_gender.
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