Crosstabs tables= dependent by independent by control /cells = column count /statistics = phi btau chisq

Crosstabs tables= dependent by independent /dependent by independent by control /cells = column count /statistics = phi btau chisq

Attitude toward Recreational Marijuana by Ideology

			liberal		
		conserv	middle	liberal	
Support	low	57.3%	31.3%	19.3%	
Rec	medium	20.6%	32.3%	32.4%	
MJ —	high	22.1%	36.5%	48.3%	
Total		335	288	358	

Taub = .282; Chi-square = 116.3; 4df, p =.000.

Elaboration Paradigm (things that can happen in control tables)

Common Terms

- 1. replication
- 2. specification
- 3a explanation
- 3b interpretation4. suppression5. distortion

Elaboration Paradigm (things that can happen in control tables)

Elaboration Terms

Psych Terms

Common Terms

1. replication

moderation

- specification
 a explanation
- 3b interpretation

mediation

spurious intervening

- 4 suppression
- 5. distortion

Elaboration Paradigm (things that can happen in control tables)

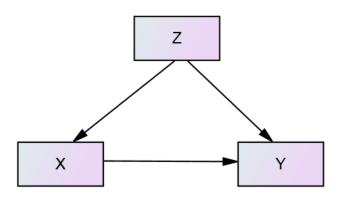
Elaboration Terms

What we see

- 1. replication
- 2. specification
- 3a explanation
- 3b interpretation
- 4. suppression
- 5. distortion

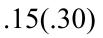
same results as original crosstab one or more sub-table is stronger than the other(s) sub-tables are weaker than the original crosstab sub-tables are weaker than the original crosstab sub-tables are stronger than the original crosstab any other result

Alternative terms for things that can happen in control tables

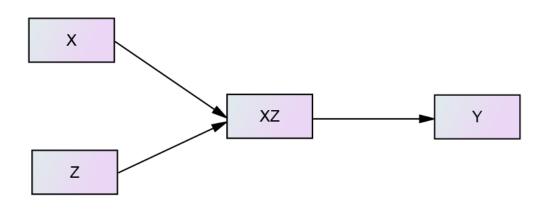

Elaboration Paradigm Terms

- 1. replication
- 2. specification
- 3a explanation
- 3b interpretation
- 4. suppression
- 5. distortion

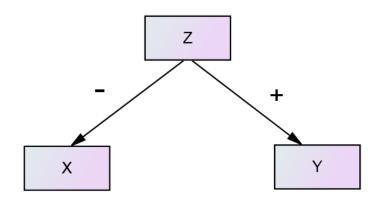
Alternative Terms


interaction; moderation spurious; confounding intervening; mediation

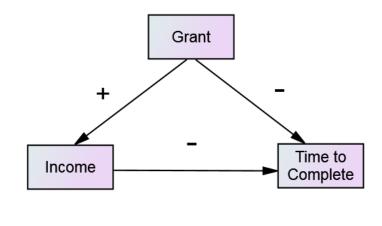
Graphic display of Explanation

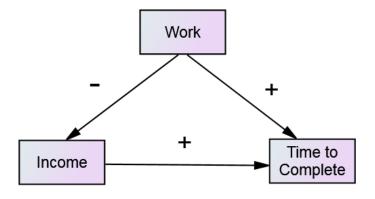

Graphic display of interpretation




Graphic display of specification

If Z=1 $X \leftarrow \rightarrow Y$ If $Z \neq 1$ $X \leftarrow / \rightarrow Y$




Graphic display of Supression

Example of Supression Time to Ph.d Completion Study

Replication

tau _b	= .28	

Ideal case of perfect replication

female=0	female=1
$tau_b = .28$	$tau_b = .28$

Replication (actual results)

tau _b	= .28	

female=0	female=1
$tau_{b} = .253$	$tau_{b} = .322$

Do the subgroups differ? Here are the results: Toral tau_b Male tau_b = .253; p= .000 Female tau_b = .322; p = .000

Three approaches to deciding

1. Significance criterion

Relationship remains significant in both subgroups Male: $tau_b = .253 (.039) p=.000$ Female; $tau_b = .322 (.038) p=.000$

Therefore not different

2. Rule of Thirds criterion

In this case, 1/3 of .284 = .095.

.284 - .095 = .189 lower than male tau_b of .253 .284 + .095 = .379 higher than female tau_b of .322

Therefore not different

3. Confidence Interval criterion

Male .253 + 1.96(.039) = .323. Therefore Confidence interval up to .323Female .322 - 1.96(.038) = .248 Therefore confidence interval down to .253

Observed valuesConfidence ValuesMale . 252.248Female .322.323

Therefore very nearly but not quite significantly different

Specification (complete)

taub	o = .28	

parent = 0		parent = 1	
			
$tau_b = .43$	5	$tau_b = .00$	ficti

itious MOAs

Specification (partial)

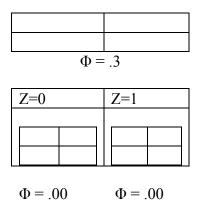
MJ by Ideology

Conserv	Center	Liberal
tau _b	= .28	

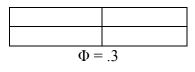
au _b	=	.28
-----------------	---	-----

parent = 0	parent = 1	
$tau_{b} = .351$	$tau_{b} = .182$	PPIC Oct 2016

non parents taub = .351 (.032) p = .000. parents taub = .182 (048) p = .000.


Calculating if difference is significant Minimum non parent taub : 351 - 1.96(.032) = .288Maximum parent taub: ..182 + 1.96(.048) = .276

They do not overlap, therefore significantly different.


My results with statistical control.

		Ν	Tau _b	std err	р
Ideology	y ←→Mj3	981	.284	(.027)	.000
Control	for Female				
	Female	487	.322	(.038)	.000
	Male	495	.253	(.039)	.000
Control	for Parent				
	Non-parent	630	.351	(.032)	.000
	parent	336	.182	(.048)	.000
Control	for Hispanic				
	Non-Hispanic	772	.302	(.030)	.000
	Hispanic	209	.192	(.063)	.002
Control	for Partisanship				
	Repub	228	.084	(.060)	.161
	Indep	366	.227	(.044)	.000
	Democ	364	.278	(.047)	.000

Explanation/Interpretation

Partial Explanation/Interpretation

Z=0		Z=1	
			1

 $\Phi = .15$ $\Phi = .15$

Race and Crime example

Race→Social Class→Crime

Crime	White	Other
Low	XX	
High		XX
		Phi =.4

Control for Social Class

Low Social Class

Crime	White	Other
Low		
High	XX	XX
		Phi =.0

High Social Class

Crime	White	Other
Low	XX	XX
High		
		Phi =.0

Analytic Conclusion

Race \rightarrow Class \rightarrow Crime

Photo \rightarrow Emotion \rightarrow Attitude toward the Mission

Coffins \rightarrow sad/proud \rightarrow Support for Mission.

Aboriginal Deaths in Custody

Aborig→ Die in Custody

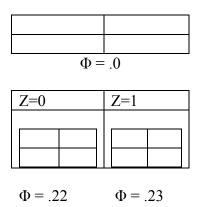
Result	Aborig	Non
Die	XX	
OK		XX
		Phi =.4

Control for Whether in Custody

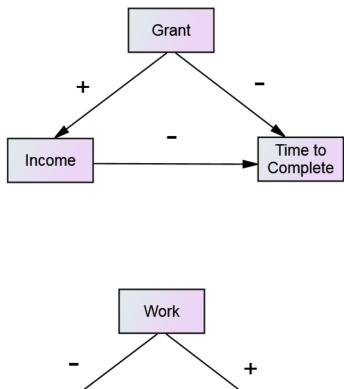
Custody

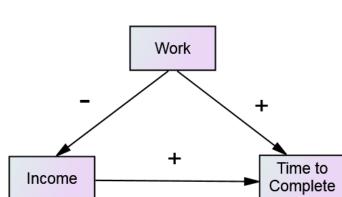
Result	Aborig	Non
Die	XX	XX
OK		
		Phi =.0

Not-Custody


Result	Aborig	Non
Die		
OK	XX	XX
		D1 . 0

Phi =.0


Analytic Conclusion


Aborig \rightarrow Custody \rightarrow Die

Supression

Example of Supression Time to Ph.d Completion Study

Summary Notes on Statistical Elaboration

J. Fletcher

Name of Effect	Crosstab	Symbolic	Regression
	Results	Representation	Results
Replication	Same results in control tables as in original table without controls	Irrespective of Z X←→Y	X predicts Y with and without Z being in equation
Specification (moderation)	Only one (or some) of control tables show relationship from original table	If $Z = 1$ $X \leftarrow \rightarrow Y$ If $Z \neq 1$ $X \leftarrow /\rightarrow Y$ Or, preferably X $Z \rightarrow XZ \rightarrow Y$	An interaction term of the form X*Z predicts Y
Interpretation (mediation)	All control tables show weaker relationship than original table	X→Z→Y	Entering Z into equation reduces or eliminates X's influence on Y
Explanation	All control tables show weaker relationship than original table	$X \leftarrow / \Rightarrow Y$	Entering Z into equation reduces or eliminates X's influence on Y
Suppression	Control tables reveal a relationship that was not evident in original table without controls	Without control for Z: $X \leftarrow / \rightarrow Y$ With control for Z $X \leftarrow \rightarrow Y$	Entering Z into equation allows X to predict Y
Distortion	Control tables show complex pattern of results		Entering Z into equation produces complex pattern